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Motivation

We want to understand growth in the presence of the earth’s
finite supply of arable land and nonrenewable natural resources
(e.g., oil and natural gas).

In the Solow model, the presence of (depletable) natural
resources reduces the long-run growth rate of the economy.
Perhaps, the size of this reduction was not that big, at 0.3%.



Land in the Solow model

Let T be the (fixed) amount of land available for production in
each period. Aggregate production function is:

Y = BKαT βL1−α−β ,

where 0 < β < 1 and α + β < 1. B is an index of technological
progress. Production function is constant returns to scale in K,
L, and T (replication argument). Furthermore,

Ḃ

B
= gB,

L̇

L
= n,

K̇ = sY − δK.



Balanced growth path with land in the Solow model

Along a balanced growth path, the growth rates of K/L and
Y/L are constant and equal. Thus, K/L

Y/L = K
Y should be

constant.

Divide production function through by Y α, to obtain
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Since we assumed that T is constant, along the balanced growth
path, when K/Y is constant, total output grows at the rate
gY = gB

1−α + (1− β
1−α)n.

The growth rate of output per worker, therefore, is
gy = gY − n = gB

1−α −
β

1−αn = g − β̄n, where g ≡ gB
1−α and

β̄ ≡ β
1−α .



The long-run growth rate of the economy now depends on
population growth, n, and the importance of land in
production, β. There is a “race” between technological
progress and the diminishing returns due to the fixed
amount of land.
There are decreasing returns to K and L in the presence of
a fixed supply of land. Absent technological progress, when
g = 0, the growth rate of output per worker is negative, and
output per worker will approach zero in the very long run.
The growth rate in B may potentially offset the pressure of
population on the fixed resource and lead to sustained
growth in output per worker. The more important is land
in production (the higher is β), the lower the long-run
growth will be: in this case, the diminishing returns to
capital and labor are stronger.



Nonrenewable resources

Land was in fixed supply but not subject to depletion.

Introduce natural resources used in production that can be
depleted (e.g., natural gas, coal, oil).

Suppose the aggregate production function is constant returns
to scale in E, L and K:

Y = BKαEγL1−α−γ ,

where E is the amount of energy used in production, and
α + γ < 1.

Let the initial amount of resource be R(0).

The stock of resource is depleted as: Ṙ = −E.



Growth with nonrenewable resources

Assume that a constant fraction of the remaining stock of
resource is used for energy production each period:

E = sER, 0 < sE < 1.

Thus, Ṙ
R = −E

R = −sE , and R(t) = R(0) exp(−sEt).

Since E(t) = sER(t), E(t) = sER(0) exp(−sEt)—the stock of
remaining resources and the amount of energy used in
production decline over time at the rate sE .





The balanced growth path

We can express the production function as
Y = B

1
1−α

(
K
Y

) α
1−α E

γ
1−α L1− γ

1−α ,

or

Y = B
1

1−α
(

K
Y

) α
1−α [sER(0) exp(−sEt)]

γ
1−α L1− γ

1−α .

Along the balanced growth path, Y grows at the rate

gY =
gB
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Thus, the growth rate of output per worker, along the balanced
growth path, is

gy = gY − n =
gB

1− α
− γ

1− α
(sE + n) = g − γ̄ (sE + n) ,

where g = gB
1−α and γ̄ = γ

1−α .

Higher population growth leads to increased pressure on
the finite resource stock and reduces the growth in output
per worker.
An increase in the depletion rate, sE , reduces the long-run
growth rate of the economy.



Quantifying the importance of natural resources

The accumulation of capital and labor runs into diminishing
returns since land and nonrenewable resources are in limited
supply. For a model with both fixed land and nonrenewable
resources, the growth rate in output per capita is:

gy = g −
[
(β̄ + γ̄)n + γ̄sE

]︸ ︷︷ ︸
“growth drag”

.

Nordhaus (1992): β = 0.1, γ = 0.1, α = 0.2, n = 0.01, and
sE = 0.005, where β, for example, is the land’s share of output
(payments to land as a share of GDP). Thus, the growth “drag”
is estimated at about 0.0031—annual per capita growth of
output in the U.S. is about 0.31% lower due to the presence of a
fixed supply of land and depletable resources.



The importance of natural resources

Is the annual “loss” of 0.31% large or small? A quantity,
growing at 0.31%, will double in about 225 years.

Consider the following question: If you start with income y0,
how much would you be willing to pay annually to have your
income growing at 2.1% instead of 1.8%? For an interest rate
r = 0.06, you will be willing to pay at most 7.1% of annual
income.



We want to solve for κ in the following equation:

(1− κ)y0Σ1 = y0Σ2,

where Σ1 = 1 + 1+0.021
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Prices as indicators of scarcity

Suppose the production function is Y = KαT βEγL1−α−β−γ .

In competitive factor markets, each factor is paid its marginal
product.

For example, R = FK = α Y
K . The share of output paid to

capital is vK = RK
Y = α. Similarly, vT = β, vE = γ,

vL = 1− α− β − γ.

The Cobb-Douglas function implies that all shares are constant
over time. However, in the data, vT and vE are falling over time.



Scarcity

Note that a factor scarce in supply but high in demand will
have a high price.

vE

vL
=

PEE/Y

wL/Y
=

PEE

wL

PE

w
=

vE/vL

E/L
.

As L grows and E gets depleted, E becomes relatively scarce
and, for constant income shares vE and vL, the price of
nonrenewable resources should rise relative to the price of labor.
The same applies to the relative price of land, PT /w.



Data surprises

In the U.S. data for fossil fuels (oil, natural gas and coal),

PE/w is falling, perhaps, because

vE is falling, and

E/L is rising (maybe, world continues to discover new
deposits of fossil fuels).









Implications and explanations of declining factor shares

To explain the declining resource share in output, we will use
the Constant Elasticity of Substitution (CES) production
function. With only two factors of production, capital and
energy, the production function is:

Y = F (K, E) = (Kρ + (BE)ρ)1/ρ,

where B is an index of technology.



Elasticity of substitution

Elasticity of substitution is defined as

∆
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)
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)
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,

where TRS is the technical rate of substitution (the slope of an
isoquant).

Define Kρ + (BE)ρ ≡ z and note that ∆Y ≈ FK∆K + FE∆E.

Thus,

∆Y = z1/ρ−1Kρ−1∆K + z1/ρ−1BρEρ−1∆E.

Along the isoquant, ∆Y = 0, and therefore
TRS = ∆K

∆E = −Bρ
(

K
E

)1−ρ.



The percentage change in TRS can be calculated from
d ln |TRS|, and the percentage change in

(
K
E

)
as d ln

(
K
E

)
.

ln |TRS| = ρBρ−1 + (1− ρ) ln K
E , or

ln
(

K
E

)
= 1

1−ρ ln |TRS| − ρ
1−ρBρ−1.

Since
∆(K

E )/(K
E )

∆TRS/TRS =
d ln(K

E )
d ln |TRS| , the elasticity of substitution, σ, is

equal to 1
1−ρ .

Note that if ρ = 0, |TRS| = K
E , and the elasticity of

substitution is equal to 1.

The elasticity of substitution is greater than 1 if 0 < ρ < 1 and
less than 1 if ρ < 0. Higher values of ρ imply greater
substitutability between the factors of production: e.g., when
ρ = 1, σ = ∞—production function is linear in K and E.



Energy’s share

The share of energy in output, provided the markets are
competitive, is vE = FEE

Y .

FE =
1
ρ
ρBρEρ−1 (Kρ + (BE)ρ)

1
ρ
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.

And so
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Empirically, E
Y is falling over time. If ρ > 0 and B is not

growing rapidly, the share of energy will decline over time:

v̇E
vE

= ρ
Ḃ
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+ρ
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)
E/Y︸ ︷︷ ︸
−

.



Intuition

If ρ > 0, energy and capital become more substitutable;
when energy becomes relatively more expensive, more
capital is used to produce the same amount of output; the
output share of a more plentiful factor will increase; and
energy is not a necessary input into production. However,
it might be hard to use capital instead of energy, and
energy must be a necessary input.

If ρ < 0, factors are less substitutable; energy is a necessary
input; the share of the relatively scarce factor should
increase but...the things turn around if energy-specific
technological change, B, changes energy from an
“increasingly scarce factor” to an “increasingly plentiful
factor.”



Energy’s share, contd.

In the U.S. data, the ratio
(

E
Y

)
declined by a factor of 2

between 1949 and 1999, implying that an annual growth rate of(
E
Y

)
was about –1.4%.

(You can solve for x from
(
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)
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(1 + x)50 = 1
2

(
E
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)
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.)

If ρ < 0, for vE to be falling over time, the energy-specific
technological change should have been increasing at a rate
higher than 1.4%.

It sounds quite plausible, taking into account that, in the
presence of depletable resources, energy-saving research would
be particularly profitable.


