Chapter 5. The Engine of Growth

Instructor: Dmytro Hryshko

Endogenous growth theory. The Romer model

- Where does the technological progress come from?
- Is there limit to economic growth and technological progress?
- The theory focuses on understanding the economic forces underlying technological progress (the possibility to earn a profit is important).
- Better thought of as a model for developed economies, where technological progress is driven by $\mathrm{R} \& \mathrm{D}$ in advanced economies.

The basic elements of the model

The final good is produced as:

$$
Y=F\left(K, A L_{Y}\right)=K^{\alpha}\left(A L_{Y}\right)^{1-\alpha}, \quad 0<\alpha<1
$$

where L_{Y} is the amount of labor used to produce the final good $Y . F\left(K, A L_{Y}\right)$ is increasing returns to scale in A, K and L_{Y} :
$F\left(\lambda K, \lambda A \lambda L_{Y}\right)=\lambda^{\alpha+1-\alpha+1-\alpha} K^{\alpha}\left(A L_{Y}\right)^{1-\alpha}=\lambda^{2-\alpha} Y>\lambda Y$.
As before, $\dot{K}=s Y-\delta K$, and $\frac{\dot{L}}{L}=n$.
Want to model \dot{A}-creation of new ideas (the flow of ideas).

Production function of new ideas

Intuitively, \dot{A} should depend on:

- the amount of labor devoted to creation of ideas, L_{A} : e.g., $\dot{A}=\bar{d} L_{A}$-each unit of labor involved in R\&D produces \bar{d} new ideas; maybe, more people searching for ideas will tend to duplicate ideas: $\dot{A}=d L_{A}^{\lambda}, \lambda<1$;
- the available stock of ideas, A : e.g., larger stock, harder to produce ideas $\dot{A}=A^{\phi} L_{A}, \phi<0$; larger stock, easier to produce ideas $\dot{A}=A^{\phi} L_{A}, \phi>0$.
Summing up,

$$
\dot{A}=d L_{A}^{\lambda} A^{\phi}
$$

Allocation of labor $L_{A}+L_{Y}=L$, where $L_{A}=s_{R} L$, and $L_{Y}=\left(1-s_{R}\right) L$.

Growth in the Romer model

In the model, $g_{A}=g_{y}=g_{k}$, where g_{A}, g_{y} and g_{k} are growth rates of ideas, output per worker and capital per worker, respectively.
Use $\dot{A}=d L_{A}^{\lambda} A^{\phi}$, to obtain $\frac{\dot{A}}{A}=d L_{A}^{\lambda} A^{\phi-1}=d \frac{L_{A}^{\lambda}}{A^{1-\phi}}$. For $\frac{\dot{A}}{A}$ to be constant, L_{A}^{λ} should grow at the same rate as $A^{1-\phi}$. Thus,
$\lambda \frac{\dot{L}_{A}}{L_{A}}=(1-\phi) \frac{\dot{A}}{A}=(1-\phi) g_{A}$. Note that $\frac{\dot{L}_{A}}{L_{A}}=\frac{\dot{L}}{L}=n$, otherwise, labor engaged in research will either exceed the total population (if $\frac{\dot{L}_{A}}{L_{A}}>\frac{\dot{L}}{L}$), or cease to exist (if $\frac{\dot{L}_{A}}{L_{A}}<\frac{\dot{L}}{L}$).

Thus, $\lambda n=(1-\phi) g_{A}$, and $g_{A}=\frac{\lambda n}{1-\phi}$.
Suppose $\lambda=1, \phi=0$, so that $\dot{A}=d L_{A}$. Exponential growth is possible only if population grows (more population means more researchers, which means more ideas, which means sustained economic growth).

Some notes

Romer (1990) assumes $\lambda=1$ and $\phi=1: \dot{A}=d L_{A} A$, or $\frac{\dot{A}}{A}=d L_{A}$. This gives a prediction that runs against the data: g_{A} and the growth rate in output per worker should have been accelerating after 1960 since L_{A} was accelerating during that period. Thus, ϕ should be less than one.

Even if we model evolution of A, the long-run growth cannot be manipulated by policymakers, for example, by subsidizing R\&D.

Growth effects versus level effects

An increase in the share of population doing research (e.g., a subsidy for R\&D) to $s_{R}^{\prime}>s_{R}$.
(1) Analyze the effects on technological growth and the stock of ideas.
(2) Follow the steps of transitional dynamics in the Solow model.
Assume $\phi=0$ and $\lambda=1: \dot{A}=d L_{A}$, and $\frac{\dot{A}}{A}=d \frac{L_{A}}{A}=d \frac{s_{R} L}{A}$.
Since $\frac{\dot{A}}{A}=g_{A}$ in steady state, $\frac{L_{A}}{A}=\frac{g_{A}}{d}$.
The level of technological progress increases permanently, the growth rate reverts to its previous level, g_{A}.

Output per worker in steady state with $\lambda=1$ and $\phi=0$

In the steady state, $\frac{Y}{L_{Y}}=\left(\frac{s}{n+g_{A}+\delta}\right)^{\frac{1}{1-\alpha}} A(t)$. Since $L_{Y}=\left(1-s_{R}\right) L, \frac{Y}{L}(t)=\left(\frac{s}{n+g_{A}+\delta}\right)^{\frac{1}{1-\alpha}}\left(1-s_{R}\right) A(t)$. In the steady state, $\frac{\dot{A}}{A}=g_{A}=d \frac{s_{R} L}{A}$, and so $A(t)=d \frac{s_{R} L(t)}{g_{A}}$.

Thus, output per worker in the economy is
$\frac{Y}{L}(t)=\left(\frac{s}{n+g_{A}+\delta}\right)^{\frac{1}{1-\alpha}}\left(1-s_{R}\right) d \frac{s_{R}}{g_{A}} L(t)$.
$L(t)$ in the formula stands for the scale effect: a larger world economy is a richer economy (more labor, more demand for ideas (demand effect), and more ideas created (supply effect)).
s_{R} enters positively to reflect the idea that more researchers create more ideas and increase productivity and negatively (through the term $1-s_{R}$) to reflect the idea that more researchers means less labor producing output.

Micro-foundations of the Romer model

There are 3 sectors in the economy.
(1) A research sector (produces ideas).
(2) An intermediate-goods sector (manufactures a capital good developed by the research sector and has an exclusive right to selling this capital good).
(3) A final-goods sector (purchases the capital good and produces the final good).

The final-goods sector

The number of capital goods/ideas is A. A competitive firm producing the final good utilizes all capital goods:

$$
Y=L_{Y}^{1-\alpha}\left(x_{1}^{\alpha}+x_{2}^{\alpha}+\ldots+x_{A}^{\alpha}\right)=L_{Y}^{1-\alpha} \sum_{j=1}^{A} x_{j}^{\alpha}
$$

Easier to think in terms of integration, where the number of intermediate goods is infinite and they are labeled on the real-line interval $[0, A]$.

$$
Y=L_{Y}^{1-\alpha} \int_{j=0}^{A} x_{j}^{\alpha} d j
$$

For example, $\sum_{j=1}^{10} x_{j}$ and $\int_{j=0}^{10} x_{j} d j$ when $x_{j}=100$ for all j are the same, and equal to 1,000 .

The objective of the final-goods firm

$$
\max _{L_{Y},\left\{x_{j}\right\}_{j=1}^{A}} \underbrace{L_{Y}^{1-\alpha} \sum_{j=1}^{A} x_{j}^{\alpha}}_{Y}-w L_{Y}-\sum_{j=1}^{A} p_{j} x_{j}
$$

where p_{j} is the price of the j-th capital good.
At the optimum, the following $A+1$ equations should hold:

$$
\begin{aligned}
w & =(1-\alpha) L_{Y}^{-\alpha} \sum_{j=1}^{A} x_{j}^{\alpha}=(1-\alpha) \frac{Y}{L_{Y}} \\
p_{j} & =\alpha L_{Y}^{1-\alpha} x_{j}^{\alpha-1}
\end{aligned}
$$

The second equation specifies the demand curve for capital $\operatorname{good} j$.

The intermediate-goods sector

Monopolists produce the capital goods used by the final-goods sector. Patent enables each firm to produce only one capital good. The objective is:

$$
\max _{x_{j}} \pi_{j}=p_{j}\left(x_{j}\right) x_{j}-r x_{j}
$$

where r is the marginal cost of producing one unit of x_{j}. Dropping subscript j, at the optimum, for each firm the following should be satisfied:

$$
p^{\prime}(x) x+p(x)-r=0
$$

Note that $p=\frac{1}{1+\frac{p^{\prime}(x) x}{p}} r$. Since $p^{\prime}(x)=(\alpha-1) \frac{p}{x}, p=\frac{r}{\alpha}$-a good is priced at a mark-up over marginal cost.

Production function consistent with micro-foundations

Note that $\sum_{j=1}^{A} \pi_{j}=\sum_{j=1}^{A} \alpha L_{Y}^{1-\alpha} x_{j}^{\alpha-1} x_{j}-\sum_{j=1}^{A} \alpha p_{j} x_{j}=$ $\alpha \underbrace{L_{Y}^{1-\alpha} \sum_{j=1}^{A} x_{j}^{\alpha}}_{Y}-\alpha^{2} \underbrace{L_{Y}^{1-\alpha} \sum_{j=1}^{A} x_{j}^{\alpha}}_{Y}=\alpha(1-\alpha) Y$. If profits of each
firm are equal so that $\pi_{j}=\pi$, then $A \pi=\alpha(1-\alpha) Y$ and $\pi=\alpha(1-\alpha) \frac{Y}{A}$. Market-cleating for the intermediate-goods sector: $K=\sum_{j=1}^{A} x_{j}=A x$, or $x=\frac{K}{A}$ if $x_{j}=x$.

Output in the final-goods sector is:
$Y=L_{Y}^{1-\alpha} \underbrace{\left(x^{\alpha}+x^{\alpha}+\ldots+x^{\alpha}\right)}_{A \text { times }}=A L_{Y}^{1-\alpha} x^{\alpha}=A L_{Y}^{1-\alpha} K^{\alpha} A^{-\alpha}=$
$K^{\alpha}\left(A L_{Y}\right)^{1-\alpha}$-the aggregate production function we started with in the beginning of our analysis of this chapter.

The research sector

The inventor sells his patent to the intermediate-goods firm. What is the fair price of the patent/idea, P_{A} ? Price the patent using the arbitrage method.

Consider 2 options:
(1) Invest the patent money at the interest rate r. One-period return is $r P_{A}$.
(2) Purchase the patent. One-period return is $\pi+\dot{P}_{A}$.

In equilibrium, $r P_{A}=\pi+\dot{P}_{A}$, or $r=\frac{\pi}{P_{A}}+\frac{\dot{P}_{A}}{P_{A}}$. In steady state, r is constant and so π and P_{A} should grow at the same rate; since $\pi=\alpha(1-\alpha) \frac{Y}{A}, \pi$ grows at the rate n, and so does P_{A}. Thus, $P_{A}=\frac{\pi}{r-n}$.

Wages in the model

In the final-goods sector, $w_{Y}=(1-\alpha) \frac{Y}{L_{Y}}$.
The productivity of research labor in the economy overall is defined from $\dot{A}=d L_{A}^{\lambda} A^{\phi}$. If a researcher ignores the economy-wide effects of his own effort, so that $\dot{A}=\bar{d} L_{A}$, $w_{R}=\bar{d} P_{A}$. In the equilibrium, $w_{R}=w_{Y}$, and $s_{R}=\frac{1}{1+\frac{r-n}{\alpha g_{A}}}$.

The interest rate r is obtained from
$r=\alpha p=\alpha \alpha L_{Y}^{1-\alpha}(\underbrace{x}_{K / A})^{\alpha}=\alpha^{2} \frac{A^{1-\alpha} L_{Y}^{1-\alpha} K^{\alpha}}{K}=\alpha^{2} \frac{Y}{K}$.

Optimal R\&D

Distortions to research that cause s_{R} to differ from its optimal level.
(1) Ideas rewarded by the stream of profits but increases in future productivity for the overall economy are not internalized into the price-too little research from a social standpoint.
(2) Researchers do not "pay" for reducing productivity of others via potential duplication (if $\lambda<1$)—too much research.
(3) The "consumer-surplus effect": the gain to society is larger than the profit+consumer surplus extracted at the monopoly price-too little research.

