Correlated Income Shocks and Excess Smoothness of Consumption

Dmytro Hryshko*
University of Alberta

Abstract

In the literature, econometricians typically assume that household income is the sum of a random walk permanent component and a transitory component, with uncorrelated permanent and transitory shocks. Using data on realized individual incomes and individual expectations of future incomes from the Survey of Italian Households’ Income and Wealth, I find that permanent and transitory shocks are negatively correlated. Relaxing the assumption of no correlation between the shocks, I explore the effects of correlated income shocks on the estimated consumption insurance against permanent and transitory shocks, and consumption smoothness using a life-cycle model with self-insurance calibrated to U.S. data. Negatively correlated income shocks result in smoother consumption, and upward-biased estimates of the insurance against transitory (and permanent when borrowing constraints are not tight) income shocks. While the life-cycle model with negatively correlated shocks fits well the sensitivity of consumption to current income shocks observed in U.S. data, it falls short of explaining the sensitivity of consumption to income shocks cumulated over a longer horizon.

Keywords: Buffer stock model of savings; Consumption dynamics; Life cycle; Income processes; Correlated shocks; Permanent-transitory decomposition.

JEL Classifications: C15, C61, D91, E21.

*University of Alberta, Department of Economics, 8-14 HM Tory Building. Edmonton, Alberta, Canada, T6G 2H4. E-mail: dhryshko@ualberta.ca. Phone: 780-4922544. Fax: 780-4923300.
1 Introduction

Since Friedman (1957), household income is typically modeled as the sum of a permanent random walk component and a short-lived transitory component, with no correlation between transitory and permanent income shocks.

Models of household consumption over the life cycle that allow for self-insurance and liquidity constraints predict that households insure against transitory shocks almost perfectly but achieve limited insurance of permanent shocks. Using simulations of a buffer stock model of savings Carroll (2009) finds, for a plausible set of parameters, that (simulated) households are able to smooth only between 8 to 25 percent of permanent shocks to income. However, Blundell, Pistaferri, and Preston (2008) and Attanasio and Pavoni (2011) recently showed, using U.S. and U.K. data respectively, that households achieve substantial insurance against permanent income shocks. Following the literature on consumption dynamics in macro data, household consumption is said to be “excessively smooth.”

This paper makes two contributions to the literature on excess smoothness, one empirical and another theoretical, taking into consideration a novel feature of correlation between permanent and transitory shocks to household income. Theoretically, I show that the sensitivity of consumption growth to current income growth is smaller the more negative is the correlation between the shocks. Negative correlation between the shocks, therefore, may provide some scope for explanation of excess smoothness of consumption. Consumption smoothness observed in the data is intimately linked to the extent to which households are able to insure against permanent and transitory shocks. Blundell, Pistaferri, and Preston (2008) (BPP) proposed a methodology for measuring consumption insurance in the data, while Kaplan and Violante (2010) focused on identification of consumption insurance against uncorrelated permanent and transitory shocks within a life-cycle model with self-insurance.

1 If income is non-stationary and income growth exhibits positive serial correlation—as supported by aggregate data—the Permanent Income Hypothesis (PIH) predicts that consumption should change by an amount greater than the value of the current income shock. Consequently, consumption growth should be more volatile than income growth. Consumption growth in aggregate data, however, is much less volatile than income growth. Therefore consumption growth is said to be “excessively smooth” relative to income growth. See, e.g., Deaton (1992) and Ludvigson and Michaelides (2001) for a more recent account.
2 Friedman (1963), in an attempt to clarify the controversial points in his book on the consumption function, pointed out that the correlation between permanent and transitory shocks may be of any sign and, if present, should be allowed for in analysis of the consumption function.
3 See also Browning and Ejrnaes (2013b) for a detailed analysis of the permanent-transitory decomposition of earnings when the shocks are correlated. Browning and Ejrnaes (2013a), p. 224, note that “Universally in the earnings literature, it is assumed that the shocks . . . are uncorrelated; this is a difficult assumption to maintain.”
using that methodology. I show that the BPP-estimates of the insurance coefficients for transitory and permanent shocks are upward-biased if the shocks are negatively correlated, and downward-biased if the shocks are positively correlated. The bias for the estimated insurance of permanent shocks is, however, likely to be small in the data.

Empirically, I examine excess smoothness of consumption in the standard life-cycle model with self-insurance calibrated to US data, allowing for correlation between permanent and transitory shocks to household income. The calibrations target the same value of the average wealth-to-income ratio in the simulated economies, and the same amount of household income risk measured by the variance of household income growth estimated using data from the Panel Study of Income Dynamics (PSID). I also estimate consumption smoothness moments using data from the Consumer Expenditure Survey (CEX) and the PSID.\(^4\) In the model with uncorrelated permanent and transitory income shocks, I find, similarly to the literature, that household consumption in the U.S. is excessively smooth, that is, the model predicts that households should be more sensitive to income shocks than what is found in the data. While the model with negatively correlated permanent and transitory income shocks fits well the reaction of consumption to current income shocks, it still falls short of explaining the MPC out of shocks cumulated over longer horizons; that is, consumption is still excessively smooth in the data. The key to successful fitting of consumption sensitivity to current income shocks is that a negative (and positive) permanent shock is partially smoothed, contemporaneously, by a transitory shock of the opposite sign. However, because this smoothing is short-lived while the permanent shock doesn’t die out, this mechanism is not enough to explain the sensitivity of consumption to the shocks cumulated over a longer horizon—a certain degree of partial smoothing of permanent shocks over longer spans is still needed to fit the consumption smoothness moments. Deaton (1992), in a summary of the literature on consumption volatility in aggregate data, defines excess smoothness as an insufficient responsiveness of consumption to the current income shock. The model with negatively correlated shocks is, therefore, capable of explaining excess smoothness in household data as defined in Deaton (1992) but the results in this paper highlight that excess smoothness should be evaluated—in macro and household data—not only against the adjustment of consumption to current income shocks, but also to the shocks cumulated over

\(^4\)Specifically, I measure consumption smoothness moments with the sensitivity of consumption to current income growth, and income growth cumulated over four years. The use of four-year growth rates allows me to explore the reaction of consumption growth to income shocks cumulated over a longer horizon, when permanent shocks become relatively more important. More information on this choice is provided in footnotes 14 and 26, and related discussion in the text.
longer horizons.

While evidence on the negative correlation between the shocks is indirect because the shocks are not observed—via helping fit the consumption smoothness moments in U.S. data better—in rare circumstances, indirect inference is not needed if the estimates of permanent and transitory shocks are available.\(^5\) Survey data on expected and realized incomes may allow to point-identify permanent and transitory shocks, which makes identification of the correlation between the shocks straightforward. Unfortunately, such data do not exist in US household surveys but are available from the Survey of Italian Households’ Income and Wealth (SHIW), widely used in the literature on household choices such as consumption and savings.\(^6\) Using data from the SHIW, I estimate permanent and transitory shocks to individual incomes and find that they are negatively correlated, with the correlation coefficient of about –0.50.

There are a number of mechanisms that may lead to a correlation between the shocks. Idiosyncratic income changes result from a variety of events—among them many are unobservable in the available datasets—which may not necessarily fit into the rigid categories of independent permanent or transitory shocks.\(^7\) For instance, displacement typically involves a period of unemployment and is also thought to contain an element of the permanent income change due to loss of the firm-specific human capital.\(^8\) On the impact, however, the income change at the time of displacement may not necessarily equal to the permanent income change as part of individual income can be recovered by an unemployment insurance payout or a severance pay, both of which are likely to be transitory. Similarly, a mild or moderate disability may entail a permanent loss in productivity and income, and involve a sickness-leave transfer. In this case, again, the transfer is not independent of a permanent change in income, and the total income change on the impact of disability can be modeled as the sum of two correlated shocks, a negative permanent and a positive transitory shock. As another example, Belzil and Bognanno (2008), using earnings data for American executives in U.S. firms, find that promotions involve an increase in the base pay and a cut in bonuses. To the extent the base-pay increase is permanent, promotion, in case it is partly

\(^5\)Note, however, that this is true of any indirect-inference type estimation (or calibration) that aims at recovering parameters which are not directly observed, such as the time discount factor and the coefficient of relative risk aversion in Gourinchas and Parker (2002), or the variance of heterogeneous income profiles in Guvenen and Smith (2013).

\(^7\)The same comment applies to persistent shocks.

unanticipated, can be modeled as a sum of negatively correlated permanent and transitory shocks. Also, income transfers from relatives are unlikely to be independent of permanent shocks to family earnings. Blundell, Pistaferri, and Preston (2008) find that such transfers partly insulate household consumption from permanent shocks to family earnings. To the extent that income transfers from relatives are transitory, some of the permanent shocks are expected to be correlated with transitory shocks.

The discussion above brings two issues. First, if the events such as job displacement and disability, and ensuing temporary transfers are the main sources of the correlation between the shocks, it is reasonable to expect that the data frequency may matter for inferring correlation—the smoothing role of the transfers is more likely to show up in the income data at higher frequencies. Unfortunately, I cannot address this issue here as I have access to data at the annual frequency only. Second, the events such as disability, displacement, promotions, and help from relatives are infrequent, while many other events can still fit the labels of either pure permanent or transitory shocks—e.g., an individual can be hired to another job with a permanent wage increase, and the resulting job-to-job transition can be labeled as a purely permanent shock. To address this issue, in Section 5, I study excess smoothness of consumption under the two scenarios: first, when permanent and transitory shocks are correlated, and, second, when the majority of the shocks are independent but an infrequent event results in both a permanent and a transitory change. I find that the results are qualitatively similar if the correlation of the shocks under the two scenarios is similar.9

While some of the shocks are truly permanent such as severe disability, it is plausible that many shocks are neither permanent nor fully transitory. For completeness, therefore, I explore the possibility that the permanent component is an autoregressive process with a finite persistence of the shock, and find that the results are qualitatively similar to the results when the permanent component is modeled as a random walk.

The rest of the paper is structured as follows. In Section 2, I introduce the income process, and discuss how correlated income shocks may affect the insurance coefficients for transitory and permanent shocks, and consumption smoothness moments. In Section 3, I provide direct evidence on the correlation between the shocks using Italian SHIW data. In Section 4, I present the life-cycle model calibrated to U.S. data. In Section 5, I discuss results from simulations of the model. Section 6 concludes.

9The correlation between all permanent and transitory shocks is implied under the second scenario.
2 The income process, correlated income shocks, and excess smoothness of consumption

2.1 The income process

Let household i’s log idiosyncratic income at time t, y_{it}, be composed of a permanent component, p_{it}, and a transitory component represented by an iid shock, ϵ_{it}:

$$y_{it} = p_{it} + \epsilon_{it}, \quad \epsilon_{it} \sim \text{iid}(0, \sigma^2_\epsilon)$$

(1)

$$p_{it} = \rho_p p_{it-1} + \xi_{it}, \quad \xi_{it} \sim \text{iid}(0, \sigma^2_\xi)$$

$$E[\xi_{it}\epsilon_{it}] = \rho_{\xi,\epsilon}\sigma_\xi\sigma_\epsilon$$

$$E[\xi_{it+j}\epsilon_{it}] = 0, \quad j = \pm 1, \pm 2, \ldots$$

ξ_{it} is the shock to the permanent component at time t, σ^2_ξ is the variance of the shocks to the permanent component, ρ_p is the persistence of the shock ξ_{it}, σ^2_ϵ is the variance of transitory shocks, and $\rho_{\xi,\epsilon}$ is the contemporaneous correlation between persistent and transitory shocks. In the literature, it is typically assumed that persistent and transitory shocks are not correlated ($\rho_{\xi,\epsilon} = 0$), and the permanent component is a random walk ($\rho_p = 1$). In the discussion below, I relax the first assumption but continue assuming that the permanent component is a random walk. In Section 5, I will present some results when ρ_p is allowed to be less than one, in which case the shock ξ_{it} still impacts on household incomes at times $t + 1$ and further but with a decaying strength. I will refer to the shock ξ_{it} as permanent when ρ_p equals one, and persistent when ρ_p is assumed to be below one.

2.2 Identification of the income process using income data

Uncorrelated shocks If the shocks are uncorrelated, identification of the income process (1) is straightforward using income data alone. The variance of permanent and transitory shocks can be identified using the following respective data moments:

$$\sigma^2_\xi = E[\Delta y_{it} \sum_{j=1}^j \Delta y_{it+j}]$$

$$\sigma^2_\epsilon = -E[\Delta y_{it}\Delta y_{it+1}].$$

Idiosyncratic income is typically a measure of income net of observable variation due to age, schooling, geographical location, aggregate effects, etc.

10
Correlated shocks While the variance of permanent shocks in model (1) is uniquely identified if the shocks are correlated or not, the variance of transitory shocks, and the correlation between the shocks are not separately identified using income data alone. In particular, the variance of permanent shocks can still be identified using the moment $E \left[\Delta y_{it} \sum_{j=-1}^{j=1} \Delta y_{it+j} \right]$. The moment $-E[\Delta y_{it} \Delta y_{it+1}]$, used for identification of the variance of transitory shocks in the case of uncorrelated shocks, will identify the sum of the variance of transitory shocks and covariance between the permanent and transitory shocks—the moment therefore does not uniquely identify the variance of transitory shocks but recovers a biased estimate of the variance of transitory shocks if permanent and transitory shocks are contemporaneously correlated; the bias equals $\rho_{\xi,\epsilon} \sigma_{\xi} \sigma_{\epsilon}$, and its size clearly depends on the true variance of transitory shocks and the correlation. Similarly, it can be shown that relying on the moments for log incomes in levels will not help in recovering the variance of transitory shocks either when the shocks are correlated. Specifically, the moments $(E[y_{it}y_{it+1}] - E[y_{it}y_{it-1}])$ and $(E[y_{it}y_{it}] - E[y_{it}y_{it+1}])$ have been used by Heathcote, Perri, and Violante (2010) to identify the variance of permanent and transitory shocks, respectively. While the first moment returns σ_{ξ}^2 if the true income process is as described in (1), the second moment returns the sum of the variance of transitory shocks and covariance between the shocks, $\sigma_{\xi}^2 + \rho_{\xi,\epsilon} \sigma_{\xi} \sigma_{\epsilon}$. The income process will be also under-identified if ρ_p is less than 1, and the shocks are correlated. In that case, the model (1) will have an ARMA(1,1) representation—the autoregressive part will enable identification of the persistence ρ_p, while the moving average part, having only two unique moments, will allow for identification of only two parameters among the remaining three unknown parameters, σ_{ξ}^2, σ_{ϵ}^2, and $\rho_{\xi,\epsilon}$. In sum, separate identification of the variance of transitory shocks and correlation between the shocks is not possible by merely adding the number of income moments—using income data alone, it’s only possible to identify the sum of the variance of transitory shocks and covariance between the shocks in case they are correlated.

2.3 Consumption insurance and smoothness, and identification of the income process using income and consumption data

Uncorrelated shocks When households are not borrowing constrained, a life-cycle model of consumption with CRRA utility results in the following (approximate) relationship be-
between household consumption and income shocks:11

\[\Delta c_{it} = \phi_{it} \xi_{it} + \psi_{it} \epsilon_{it} + \text{error}, \]

where \(c_{it} \) is household \(i \)'s idiosyncratic log consumption at age \(t \).12 The coefficients \(\phi_{it} \) and \(\psi_{it} \) measure the strength with which household consumption reacts to the permanent and transitory shock, respectively; \(\phi_{it} \) and \(\psi_{it} \) are functions of household risk and time preferences, the volatility of permanent and transitory shocks, persistence of the shocks, and household age. Blundell, Pistaferri, and Preston (2008) estimate average values of \(\phi_{it} \) and \(\psi_{it} \), \(\phi \) and \(\psi \) respectively, using U.S. data on household disposable income and consumption, and find that they vary with household wealth, and education. Kaplan and Violante (2010), in a life-cycle model with self-insurance calibrated to U.S. data, compare the model-based estimates of \(\phi \) and \(\psi \) to the values estimated in Blundell, Pistaferri, and Preston (2008), and examine how household insurance against permanent and transitory shocks varies with age, and persistence of the shocks to the permanent component of income, among other things.

Using simulated data from a model of consumption choices, the (average values of) insurance against permanent and transitory shocks could be recovered from a regression

\[\Delta c_{it} = \phi \xi_{it} + \psi \epsilon_{it} + \text{error}. \] (2)

Although permanent and transitory shocks are not observed in the data, the coefficients \(\phi \) and \(\psi \) can be estimated, as in Blundell, Pistaferri, and Preston (2008), with the following data moments:

\[\phi_{\text{BPP}} = \frac{E \left[\Delta c_{it} \sum_{j=-1}^{j=1} \Delta y_{it+j} \right]}{E \left[\Delta y_{it} \sum_{j=-1}^{j=1} \Delta y_{it+j} \right]} \] (3)

\[\psi_{\text{BPP}} = \frac{E \left[\Delta c_{it} \Delta y_{it+1} \right]}{E \left[\Delta y_{it} \Delta y_{it+1} \right]}. \] (4)

Blundell, Pistaferri, and Preston (2008) estimate \(\phi \) and \(\psi \) to be about 0.64 and 0.05, respectively, for their whole sample (36\% of permanent and 95\% of transitory shocks are found to be insured). A life-cycle model with self-insurance predicts, for reasonable parameterizations, that \(\phi \) is above 0.64, and therefore the model falls short of explaining the amount

11See Blundell, Pistaferri, and Preston (2008) for details.

12Household idiosyncratic log consumption is typically defined as the residual from a regression of log consumption on observables such as age, schooling, family size, the number of kids, time dummies, etc.
of insurance against income shocks available in the data. That is, consumption in the data is excessively smooth (relative to the predictions of a life-cycle model with self-insurance).

The shocks in equation (2) are normally not observed but they are part of idiosyncratic household income growth, Δy_{it}. The (combined) effect of household income shocks on consumption can be analyzed using observable information on (residual) growth in consumption and income:

$$\Delta c_{it} = \beta \Delta y_{it} + \text{error}. \quad (5)$$

Using equation (2), the estimated sensitivity of consumption to current income shocks can be expressed as:

$$\beta = \frac{\phi \sigma^2_\xi + \psi \sigma^2_\epsilon}{\sigma^2_\xi + 2\sigma^2_\epsilon}. \quad (6)$$

Any consumption model that fits $\hat{\beta}$ estimated from equation (5) should be also consistent with consumption reaction to the shocks cumulated over longer horizons measured by the coefficient β_j from an OLS regression:

$$\Delta_j c_{it} = \beta_0 + \beta_j \Delta_j y_{it} + \text{error}, \quad (7)$$

where $\Delta_j z_{it} \equiv z_{it} - z_{it-j}$, and z_{it} is log consumption or log income.

It can be shown that the sensitivity of cumulative consumption growth to cumulative income growth over j periods is measured by

$$\beta_j = \frac{j \phi \sigma^2_\xi + \psi \sigma^2_\epsilon}{j \sigma^2_\xi + 2\sigma^2_\epsilon}. \quad (8)$$

Longer differences in log income will be largely dominated by permanent shocks, and this should be reflected in the long differences in log consumption. The estimated values of ϕ and ψ, together with the estimated income process, could be used to predict the values of β_j’s. Since the (non-linear) moments β_j are typically not targeted when recovering ϕ and ψ in the data (to gain efficiency, the latter are normally recovered from a minimum-distance

13 Point-identification of permanent and transitory shocks in equation (1) is possible, however, if one has access to panel data with individual incomes and individual expectations of future incomes. I will return to this issue in Section 3 below.

14 This can be seen by rewriting equation (8) as $\frac{j \phi \sigma^2_\xi}{\text{var}(\Delta_j y_{it})} + \frac{\psi \sigma^2_\epsilon}{\text{var}(\Delta_j y_{it})}$. Clearly, the loading factor on the contribution of the variance of permanent shocks to β_j increases with the horizon j.
procedure matching the atocovariance function of income and consumption growth, and cross-covariances of income and consumption growth rates), \(\hat{\beta}_j \)'s provide additional information about consumption reaction to the shocks beyond that contained in the estimates of \(\phi \) and \(\psi \), \(\hat{\phi}_{BPP} \) and \(\hat{\psi}_{BPP} \). For instance, using the point estimates of \(\phi_{BPP} \) and \(\psi_{BPP} \), and the (average) variances of permanent and transitory shocks in Blundell, Pistaferri, and Preston (2008), equation (8) implies the values of \(\beta_1 \) and \(\beta_4 \) of 0.18 and 0.60 respectively, while in their data \(\hat{\beta}_1 \) and \(\hat{\beta}_4 \) are equal to 0.15 and 0.23, both with robust standard errors of about 0.02. While the estimated values of insurance parameters in BPP fit well \(\hat{\beta}_1 \), they result in substantial overprediction of \(\hat{\beta}_4 \). Alternatively, one can use a structural model of consumption and the data moments \(\hat{\beta}_j \)'s as auxiliary parameters in the indirect inference or method-of-simulated-moments procedures to recover the degree of insurance against permanent and transitory shocks, due to self-insurance (and other mechanisms), as is done, e.g., in Guvenen and Smith (2013) and Hryshko (2010). In the indirect-inference approach of Guvenen and Smith (2013), for instance, the data moments \(\hat{\phi}_{BPP} \) and \(\hat{\psi}_{BPP} \) are not explicitly targeted but fitting a structural model to the data moments such as \(\hat{\beta}_j \)'s will produce the model-implied estimates of \(\phi_{BPP} \) and \(\psi_{BPP} \). As \(\hat{\beta}_1 \) and \(\hat{\beta}_4 \) are lower in the data than what is implied by the BPP estimates of \(\phi \) and \(\psi \), it is not surprising that the indirect-inference approach, explicitly targeting the moments (similar to) \(\hat{\beta}_j \)'s but not the BPP moments themselves, typically recovers a higher value of partial insurance of permanent shocks (total insurance, inclusive of the insurance implied by borrowing and saving) than is found in BPP.\(^{15}\) In sum, both sets of moments—\(\hat{\phi}_{BPP} \) and \(\hat{\psi}_{BPP} \), and \(\hat{\beta}_j \)'s—are potentially useful for evaluating consumption smoothness in models with consumption and savings choices over the life cycle.

Correlated shocks When the shocks are correlated, the moments (3)–(4) no longer recover the true values of \(\phi \) and \(\psi \) from equation (2). While the coefficients \(\phi \) and \(\psi \) estimated using equation (2) (and observable permanent and transitory shocks from the model data) will be the same if the shocks are correlated or not (since \(\phi \), e.g., measures the effect of the permanent shock net of its correlation with the transitory shock), the correlation will affect the estimated values of \(\phi_{BPP} \) and \(\psi_{BPP} \) using the moments in equations (3)–(4). In

\(^{15}\)Guvenen and Smith (2013), for a different parametrization of the income process, find that about 50% of income surprises are insured on top of borrowing and saving by consumers. Hryshko (2010) finds a similar number for the income process in equation (1).
particular, the estimated value of ϕ_{BPP} will equal

$$\hat{\phi}_{BPP,\text{corr}} = \frac{\phi \sigma^2_{\xi} + \psi \rho_{\xi,\epsilon} \sigma_{\xi} \sigma_{\epsilon}}{\sigma^2_{\xi}},$$

(9)

while the bias in the estimated insurance of permanent shocks equals

$$(1 - \hat{\phi}_{BPP,\text{corr}}) - (1 - \phi) = -\psi \rho_{\xi,\epsilon} \frac{\sigma_{\xi}}{\sigma_{\epsilon}}.$$

(10)

The estimated insurance of permanent shocks will be biased upward (downward) if the shocks are negatively (positively) correlated. Clearly, the bias depends on the correlation of the shocks, and the size of the ratio of the variance of transitory shocks to the variance of permanent shocks but will likely be small as the reaction of household consumption to transitory shocks, ψ, is typically estimated to be close to zero.

The estimated value of ψ_{BPP}, in turn, will equal

$$\hat{\psi}_{BPP,\text{corr}} = \frac{\psi \sigma^2_{\epsilon} + \phi \rho_{\xi,\epsilon} \sigma_{\xi} \sigma_{\epsilon}}{\rho_{\xi,\epsilon} \sigma_{\xi} \sigma_{\epsilon} + \sigma^2_{\epsilon}},$$

(11)

and the bias in the estimated insurance of transitory shocks will equal

$$(1 - \hat{\psi}_{BPP,\text{corr}}) - (1 - \psi) = (\psi - \phi) \rho_{\xi,\epsilon} \sigma_{\xi} \sigma_{\epsilon} / (\rho_{\xi,\epsilon} \sigma_{\xi} \sigma_{\epsilon} + \sigma^2_{\epsilon}).$$

(12)

If $\rho_{\xi,\epsilon}$ is positive, the bias is unambiguously negative, so that the insurance of transitory shocks, $1 - \psi_{BPP}$, estimated with equation (4) will be biased downward. When the shocks are negatively correlated and $\left| \rho_{\xi,\epsilon} \frac{\sigma_{\xi}}{\sigma_{\epsilon}} \right| < 1$, since $\phi > \psi$, the estimated insurance of transitory shocks will be biased upward. Furthermore, if the shocks are correlated, equation (6) is modified to

$$\hat{\beta} = \frac{\phi \sigma^2_{\xi} + \psi \sigma^2_{\epsilon} + (\phi + \psi) \rho_{\xi,\epsilon} \sigma_{\xi} \sigma_{\epsilon}}{\text{var} \Delta y_{it}}.$$

(13)

Since ψ is numerically low and the variance of permanent shocks is the same if the shocks are correlated or not, $\hat{\beta}$ will be lower the more negative is the correlation between the shocks. Correlation between the shocks, therefore, provides some scope for explanation of excess smoothness in household consumption. Equation (13) highlights an important point raised by Quah (1990) in the context of excess smoothness puzzle in the aggregate data: holding constant the variance of income growth, the size of $\hat{\beta}$ will be dependent on
the relative importance of transitory and permanent components in income, or, in terms of equation (13), the variances of permanent and transitory shocks.

Equation (13) shows that an empirical estimate of β from regression (5), together with a structural model of consumption choices, will help identify the correlation between permanent and transitory shocks. The model will pin down ϕ and ψ, the income data will allow for identification of σ^2_ξ, and the data estimates of the first-order autocovariance of income growth and β will provide enough information to separately identify the variance of transitory shocks, σ^2_ϵ, and the correlation between the shocks, $\rho_{\xi,\epsilon}$.

When the shocks are correlated, the sensitivity of cumulative consumption growth to cumulative income growth over j periods is measured by

$$
\hat{\beta}_j = \frac{j\phi\sigma^2_\xi + \psi\sigma^2_\epsilon + (\phi + j\psi)\rho_{\xi,\epsilon}\sigma_\xi\sigma_\epsilon}{j\sigma^2_\xi + 2\sigma^2_\epsilon + 2\rho_{\xi,\epsilon}\sigma_\xi\sigma_\epsilon}.
$$

While $\hat{\beta}_1$ allows for exact identification of the correlation between the shocks, $\hat{\beta}_j$’s measured for $j > 1$ can be used as overidentifying restrictions for the model with correlated shocks.

Summary To summarize, correlation between the shocks affects empirical estimates of the insurance coefficients for permanent and transitory shocks, as well as the sensitivity of consumption to current income growth and income growth cumulated over longer horizons. Negatively correlated income shocks result in smoother consumption, so that allowing for this previously neglected mechanism may potentially explain excess smoothness of consumption. Although correlation between the shocks cannot be identified using income data alone, it is feasible to identify it using information on consumption sensitivity to current income growth and a model of life-cycle choices of consumption and savings. Section 5 explores these issues in detail.

3 Direct evidence on the correlation of income shocks

The previous discussion relied on the assumption that permanent and transitory shocks are not directly observable. Otherwise, correlation between the shocks could be straightforwardly recovered from a series of permanent and transitory shocks.

In this section, I use data from the Survey of Italian Households’ Income and Wealth (SHIW) to estimate permanent and transitory shocks to individual incomes. Pistaferri (2001)
first showed how to point-identify transitory and permanent shocks to incomes using data on expected and realized income growth in SHIW data. In the 1995 and 1998 waves of the SHIW, individuals were asked about expectations of their future net disposable incomes, which enables estimation of one-year expected growth in net incomes between years 1995 and 1996, and 1998 and 1999.\footnote{Net disposable income is defined as the sum of net wages and salaries and fringe benefits, pensions and other transfers, and income from buildings (actual and imputed rents). For more details, see documentation at \url{http://www.bancaditalia.it/statistiche/indcamp/bilfait/docum}.}

Estimation of correlation using data on subjective expectations of future incomes

Assume that log income, y_{it}, is described by the model (1) with $\rho_p = 1$. The growth rate in income between 1995 and 1998 can then be written as:

$$y_{i,98} - y_{i,95} = \xi_{i,96} + \xi_{i,97} + \xi_{i,98} + \epsilon_{i,98} - \epsilon_{i,95}. \quad (15)$$

For each individual i, the transitory shock in 1995 and 1998 can be identified using the following two moments:

$$\epsilon_{i,95} = -E[\Delta y_{i,96}|\Omega_{i,95}] \quad (16)$$
$$\epsilon_{i,98} = -E[\Delta y_{i,99}|\Omega_{i,98}], \quad (17)$$

where $\Omega_{i,t}$ is information available to individual i at time t when expectation about net income for period $t+1$ is revealed. Thus, the sum of permanent shocks in equation (15) can be calculated as:

$$\xi_{i,96} + \xi_{i,97} + \xi_{i,98} = y_{i,98} - y_{i,95} - E[\Delta y_{i,96}|\Omega_{i,95}] + E[\Delta y_{i,99}|\Omega_{i,98}]. \quad (18)$$

Alternatively, the sum of permanent shocks can be also calculated using the information on expected income levels:

$$\xi_{i,96} + \xi_{i,97} + \xi_{i,98} = E[y_{i,99}|\Omega_{i,98}] - E[y_{i,96}|\Omega_{i,95}]. \quad (19)$$

The correlation between the sum of permanent shocks and the transitory shock in 1998 equals:

$$\frac{\text{cov}(\xi_{i,96} + \xi_{i,97} + \xi_{i,98}, \epsilon_{i,98})}{\sqrt{\text{var}(\xi_{i,96} + \xi_{i,97} + \xi_{i,98})\cdot \text{var}(\epsilon_{i,98})}}. \quad (17)$$

Assuming the variances of permanent and transitory shocks, and the covariance between permanent and transitory shocks are time-invariant, one
can calculate the correlation between permanent and transitory shocks as

$$\text{corr}(\xi_{it}, \epsilon_{it}) = \sqrt{\frac{\text{cov}(\xi_{it-2} + \xi_{it-1} + \xi_{it}, \epsilon_{it})}{\sigma_{\xi_{t-2}}^2 + \sigma_{\xi_{t-1}}^2 + \sigma_{\epsilon_{t}}^2 \sigma_{\epsilon_{t}}}}.$$ \hfill (20)

Using the estimates of the sum of permanent shocks in equations (18) or (19) and an estimate of the transitory shock in equation (17), I will calculate the correlation between the shocks relying on equation (20).

The details of sample selection and calculation of expected incomes and growth rates are as follows. I used data for individuals of ages 25 to 65 who are not retired, not self-employed or students. I dropped individuals with inconsistent records on gender, and year of birth. In 1995 and 1998, individuals were asked about their maximum and minimum next-year expected net disposable income; in addition, they were asked about the probability of receiving less than the midpoint between the stated minimum and maximum. As in Guiso, Jappelli, and Pistaferri (2002) and Kaufmann and Pistaferri (2009), I assumed that expected income distributions are triangular, and calculated expected incomes and income growth rates for 1996 and 1999. I dropped observations if an individual’s record on the probability of the midpoint is either zero or one, and the minimum and maximum of the individual’s expected income distribution are different from each other. I also dropped observations if an individual’s minimum and maximum are the same (no expected fluctuations in the next-period income) but the probability of receiving income below the midpoint is different from zero. Part of expected incomes and growth rates can be due to life-cycle or aggregate effects common to individuals observed at the same age in the same year. I removed those effects from expected incomes, expected and observed income growth rates by regressing the first measure on a third-order polynomial in age and year dummies, and the latter two measures on a quadratic polynomial in age and year dummies. The resulting sample contains 367 individuals, with the majority represented by males, married individuals, and individuals with a high school diploma or more education—see Table 1 for some sample statistics. For this sample, the correlation between permanent and transitory shocks is about \(-0.47\) with a bootstrapped standard error of 0.11.\(^{17}\) Standard deviations of permanent and transitory shocks agree with the estimates of Kaufmann and Pistaferri (2009) using the same waves of

\(^{17}\)Using equations (18) or (19) for estimation of (the sum of) permanent shocks delivers virtually identical estimates of the correlation between permanent and transitory shocks. The correlation between the estimates of permanent shocks using (18) or (19) is 0.99.
SHIW data. The sample containing only heads is limited to 201 individuals; for that sample, the correlation between the shocks is estimated at –0.52 with a bootstrapped standard error of 0.14. An important caveat is that the finding of the negative correlation between the shocks is not necessarily transferable to other countries with differently functioning labor markets. For instance, unemployment insurance in the U.S. is less generous in magnitude and duration than in Europe which may lower, in absolute value, the estimated correlation of the shocks in the U.S., provided that the event of displacement is the main source of the correlation between the shocks. As was emphasized in the Introduction, it is possible that the distributions of (the majority of) permanent and transitory shocks are independent but some market mechanism or an endogenous reaction to infrequent shocks within a household may result in household income changes and consumption allocations resembling the case of income shocks correlated period-by-period. For example, a head’s layoff may entail a permanent negative effect on his income (e.g., via loss of the firm-specific human capital) but may be also accompanied by a payout of unemployment insurance benefits or a severance pay which may work as a positive transitory shock. A similar mechanism for the negative correlation between permanent and transitory shocks is suggested in Browning and Ejrnæs (2013b). Such event is rare but there are other rare events that may potentially result in a positive or a negative correlation between permanent and transitory shocks such as health shocks, promotions, or job mobility. I will expand on this issue in Section 5.

Robustness to serial correlation In the previous discussion, I assumed that the transitory process is an iid shock. If the transitory component is instead a moving average process of order 1, \(\epsilon_{it} + \theta \epsilon_{it-1} \), one needs \(E[\Delta y_{it+2} | \Omega_{it}] \) to identify the transitory shock at \(t \). In the absence of such information (as is the case for Italian data), \(-E[\Delta y_{it+1} | \Omega_{it}] \) identifies \((1 - \theta)\epsilon_{it} + \theta \epsilon_{it-1} \). It follows that equation (17) would identify \((1 - \theta)\epsilon_{i,98} + \theta \epsilon_{i,97} \), while equation (18) would identify \(\xi_{i,96} + \xi_{i,97} + \xi_{i,98} + \theta \epsilon_{i,98} - \theta \epsilon_{i,95} \). In this case, the numerator of equation (20) would measure \((1 - \theta)\text{cov}(\xi_{i,98}, \epsilon_{i,98}) + (1 - \theta)\theta \sigma^2_{\epsilon_{98}} \). Since \(\theta \) is normally found to be positive and less than 1 in household data, the estimated correlation in equation (20) would be biased towards zero if the true covariance between permanent and transitory shocks is negative. Notice, however, that Jappelli and Pistaferri (2011), using the same dataset,

\(^{18}\)Note that the value of the standard deviation of permanent shocks reported in Table 1 reflects the standard deviation of the sum of permanent shocks between years 1998 and 1995, while Kaufmann and Pistaferri (2009) report on the annual variance of permanent shocks.

\(^{19}\)The income process composed of a random-walk permanent component and an MA(1) transitory component is considered, e.g., in Meghir and Pistaferri (2004).
have found that income growth is not correlated with income growth two years from now and on, which is consistent with the income process composed of a random walk and an iid transitory shock. Jappelli and Pistaferri (2006) and Kaufmann and Pistaferri (2009) reach the same conclusion.20

One could also use expected income growth between 1996 and 1995 to test for serial correlation in the transitory component. If the true process is a random walk plus a moving average process of order 1, the covariance between \(E[y_{i,99}\Omega_{i,98}] - E[y_{i,96}\Omega_{i,95}] \), and \(-E[\Delta y_{i,96}\Omega_{i,95}]\) will equal \(-\theta(1-\theta)\sigma^2_{\epsilon_95}\), and will be negative if \(0 < \theta < 1\), which is a typical case in the literature. If the transitory component is an iid shock, as is assumed above, the covariance will equal zero. For the whole sample, an estimate of the covariance is 0.008 with a robust standard error of 0.007, while for the sample comprised of heads only, an estimate of the covariance is 0.01 with a robust standard error of 0.01—in both samples the data do not appear to favor the hypothesis of a serially correlated transitory component.

Robustness to idiosyncratic trends In the literature, another popular alternative to the permanent-transitory decomposition of household incomes is an income process that comprises an AR(1) persistent component, household heterogeneity in income profiles (growth rates), and an iid transitory component—see, e.g., Guvenen (2009) who labels this income process HIP. In this case, individual \(i\) with \(t\) years of labor market experience will have income \(y_{it} = \beta_i t + p_{it} + \epsilon_{it}\), where \(p_{it} = \rho p_{it-1} + \xi_{it}\) as in equation (1) but \(\rho_p\) is not restricted to one, and \(\beta_i\) is an individual-specific growth rate that averages out to zero in the population and has variance \(\sigma^2_{\beta}\). Note that the estimated covariance between \(E[y_{i,99}\Omega_{i,98}] - E[y_{i,96}\Omega_{i,95}]\) and \(-E[\Delta y_{i,96}\Omega_{i,95}]\), used for identification of the correlation between the shocks above, will not help differentiating between the income process (1) with \(\rho_p = 1\) and correlated income shocks and the income process with heterogeneous trends as both income processes may

20In the datasets where the transitory component contains a moving average process, i.e. when \(\theta > 0\), equation (20) no longer identifies correlation between the shocks but the moments (17) and (18) (right-hand-sides of the equations) can be used to bound the correlation given some plausible values of \(\theta\) and the variance of permanent shocks (which can in principle be uniquely identified without relying on the data on expectations). In particular, for a given value of \(\theta\), the variance of transitory shocks will be uniquely identified using the data moment (17). One can further use the moment (18) to identify the covariance between the shocks; to pin down the correlation between the shocks, one would need a value for the variance of permanent shocks. For the sample of all individuals, assuming that \(\theta = 0.10\) (the estimated value in BPP for US data), correlation between the shocks equals about \(-0.40\) \((-0.20)\) when the variance of permanent shocks is half (twice) the variance of transitory shocks, while assuming that \(\theta = 0.30\) (in the upper range of estimated values in Meghir and Pistaferri (2004) for US data), correlation between the shocks is about \(-0.70\) \((-0.35)\) when the variance of permanent shocks is half (twice) the variance of transitory shocks.
predict a negative correlation. Under the income process with heterogeneous trends, however, the covariance between \(E[y_{i,99} | \Omega_{i,98}] - E[y_{i,96} | \Omega_{i,95}] \) and \(-E[\Delta y_{i,96} | \Omega_{i,95}] \) will be negative and equal to \(-\rho_p(1 - \rho_p)^2(\rho_p^2 + \rho_p + 1) \text{var}(p_{i,95}) - 3\sigma_B^2\). As this covariance is estimated to be positive but insignificantly different from zero in the data, one may conclude that the data are not supportive of the income process with heterogeneous trends and a moderately persistent AR(1) component.

Summary Summarizing, there is evidence that permanent and transitory shocks to Italian net disposable incomes are negatively correlated. However, given the sample sizes are small, one may tentatively conclude that the data favor the income process (1) with contemporaneously correlated income shocks; more data are needed to enable ruling out some alternative income processes such as HIP.

4 The model

In this section, I set up a model of household consumption choices over the life cycle, and evaluate the quantitative importance of the correlation between permanent and transitory shocks for consumption smoothness and consumption insurance. In the model, households receive exogenous flows of income, net of transfers and taxes, subject to risky fluctuations. The model allows for insuring income risk via non-contingent debt only, and is a variant of the standard incomplete markets setup analyzed, e.g., in Krueger and Perri (2005) and Kaplan and Violante (2010). The model abstracts from potentially important choices such as housing, labor supply, job search and human capital accumulation, etc. but highlights the role of self-insurance for consumption smoothing, and, importantly for this paper, allows to compare the results with correlated and uncorrelated income shocks in the standard model setup.

21In particular, if the true income process is HIP, the covariance will equal \(\rho_p^2(1 - \rho_p)(\rho_p^2 - 1) \text{var}(p_{i,95}) + (1 - \rho_p)\rho_p^2\sigma_{\xi_{en}}^2 + (1 - \rho_p)\rho_p\sigma_{\xi_{en}}^2 - 3\sigma_B^2 \). Under the assumption that the variance of persistent shocks is not changing over time, the smallest value of the term not involving the growth-rate heterogeneity (if the variance of persistent shocks is not zero) equals \(\rho_p(1 - \rho_p)(1 + \rho_p)^{-1}(1 + \rho_p + \rho_p^2)\sigma_{\xi}^2 \). Since the term is positive, the smallest value of \(\sigma_B^2 \) (when the variance of persistent shocks approaches zero) equals \(0.028/3 \), or 0.009, where 0.028 is the negative of the estimated covariance in the data. Note also that the estimated value of the covariance is not consistent with an income process that contains just an AR(1) persistent component and an iid transitory component, as in this case the predicted covariance is positive while it is negative in the data.

22The covariance equals zero if the true income process is (1) with \(\rho_p = 1 \) and correlated (or uncorrelated) permanent and transitory shocks as can be verified by setting \(\rho_p \) to 1 and \(\sigma_B^2 \) to zero in the expression.
I assume that households value consumption, supply labor inelastically, face income uncertainty over the working part of the life cycle, and are subject to liquidity constraints. Households start their working life at age 26, retire at age $R = 65$, face age-dependent mortality risk until age $T = 90$ when they die with certainty. Household i’s problem is:

$$\max_{\{C_t\}_{t=0}^{T}} E_{i,26} \sum_{t=26}^{T} \left(\frac{1}{1+\theta} \right)^{t-26} s_t U(C_t),$$

subject to the budget constraint,

$$w_{it+1} = (1 + r)(w_{it} + Y_{it} - C_{it}),$$

and the liquidity constraint:

$$w_{it} \geq w_t, \text{ for } t = 26, \ldots, T.$$

Cash-on-hand available to household i at age t, $X_{it} = w_{it} + Y_{it}$, consists of labor income realized at t, Y_{it}, and household wealth at age t, w_{it}; r is a net interest rate on a risk-free asset held between ages t and $t+1$. θ is the common time discount rate, s_t is the unconditional probability of surviving up to age t, C_{it} is household i’s consumption at age t, and $E_{i,26}$ denotes household i’s expectation about future resources based on the information available at age 26. I assume that utility is CRRA, $U(C_{it}) = \frac{C_{it}^{1-\rho}}{1-\rho}$, where ρ is the coefficient of relative risk aversion. Households are subject to liquidity constraints so that their wealth is constrained to be above w_t—equation (23).

Calibration

Demographics I assume that households start their life cycle at age 26, retire at age 65, and die with certainty at age 90. Before retirement, the unconditional probability of survival is set to 1; after the retirement, households face an age-dependent risk of dying. The conditional probabilities of surviving up to age t provided the household is alive at age $t - 1$ for all $R < t \leq T - 1$ are taken from Table A.1 in Hubbard, Skinner, and Zeldes (1994).\(^{23}\)

\(^{23}\)This is the mortality data on U.S. women for 1982.
Preferences, and the real interest rate I set the gross real interest rate to 1.03, and the coefficient of relative risk aversion to 2. For comparability with Kaplan and Violante (2010), I calibrate the time discount factor to match an aggregate wealth-to-income ratio of 2.5.

The income process I use the income process outlined in equation (1). I will consider the permanent-transitory decomposition, with and without correlation between the shocks, but will also model the permanent component as an autoregressive process. The age-dependent deterministic growth rate in household disposable income is estimated using CEX data. I decompose household disposable log income into cohort, time, and age effects, controlling for the effect of family size. As is well known, age, cohort, and time effects are not separately identified. To identify the age effects, I follow Deaton (1997) and restrict the time dummies to be orthogonal to a time trend and to add up to zero. I use the age effects from such a regression to construct the profile of deterministic growth in household disposable income.

Retirement After retirement, household income is assumed to be proportional to the permanent component of income received at age R, $Y_{it} = \kappa P_{iR}$ for ages $t = R + 1, \ldots, T$, where κ is the replacement rate. The replacement rate κ is set to 0.60. This value is similar to an estimate of the replacement rate for U.S. high school graduates in Cocco, Gomes, and Maenhout (2005).

Initial wealth I assume that households start their working life with zero assets but will also allow for a distribution of initial wealth levels estimated from PSID data in a robustness experiment.

Borrowing limits I will consider two types of borrowing constraints, zero and natural borrowing constraints. When households are subject to zero borrowing constraints, wealth cannot be negative, that is $w_t = 0$ for all ages t. Under the natural borrowing constraints, households are allowed to borrow up to the age-dependent limit, equal to the largest amount

24 In a general equilibrium setting, household desire to smooth consumption and the demand for precautionary savings will affect the equilibrium interest rate and household ability to insure against permanent and transitory shocks (e.g., through the effect of interest rates on natural borrowing limits). While such effects are worth keeping in mind, they are not a subject of this paper.

25 In the experiments outlined below, when the permanent component of income follows an autoregressive process, income at retirement is assumed to be proportional to the value of the persistent component in the last working period.
of credit they can repay in case they receive the lowest possible income realization in every period.

Smoothness of consumption, insurance, and income moments I obtain consumption information from two data sources, the CEX and the PSID. The CEX contains detailed information on total expenditures and its components, and the demographics for representative cross sections of the US population. I use extracts from the 1980–2003 waves of the CEX available at the National Bureau of Economic Research (NBER) webpage. Unlike the CEX, the PSID provides panel data yet limits its coverage of consumer expenditures to food at home and away from home. Since I am interested in the link between changes of household disposable income and total household consumption, I impute the total consumption to the sample PSID households using information on household food consumption in the PSID and the CEX, and matched demographics from the CEX and the PSID. PSID data are taken from the 1981–1997, 1999, 2001, and 2003 waves. I follow the methodology of Blundell, Pistaferri, and Preston (2008) to impute total consumption to the PSID households. The full details on sample selection of CEX and PSID households are provided in Appendix A. Briefly, from the PSID, I choose married couples headed by males of ages 26–70 born between 1912 and 1978, with no changes in family composition (no changes at all or changes in family members other than the head and wife). I drop income outliers, observations with missing or zero records on food at home and, for each household, keep the longest period with consecutive information on household disposable income and no missing demographics. From the CEX, I choose households who are complete income and expenditure reporters, with heads who belong to the same age groups and cohorts as in the PSID sample.

In the PSID, federal income taxes are recorded until 1991. To have a consistent measure of federal income taxes for the data that extend beyond 1991, one needs to impute them to the PSID households. I use the TAXSIM tool at the NBER to calculate federal income taxes and social security withholdings for the head and wife and all other family members if present.

I utilize data from the 1981–1997 surveys of the PSID to impute total household consumption. For different model parameterizations below, I will tabulate the moments relating to the extent of smoothness of consumption with respect to income changes measured by $\hat{\beta}_j$’s; the true insurance coefficients, $(1 - \hat{\phi})$ and $(1 - \hat{\psi})$, and the insurance coefficients estimated using BPP moments, $(1 - \hat{\phi}_{\text{BPP}})$ and $(1 - \hat{\psi}_{\text{BPP}})$; the variance of idiosyncratic income growth, and the persistence of household disposable income. The consumption smoothness
is measured by the coefficients $\hat{\beta}_j$, $j = 1$ or 4, from the following panel regressions estimated by OLS:

$$\Delta Ja_{it} = \beta_0 + \beta_j \Delta Ja_{it} + \gamma' x_{it} + \epsilon_{it},$$ \hspace{1cm} (24)

where $z_{it} \equiv \log Z_{it} - \frac{1}{N_t} \sum_{i=1}^{N_t} \log Z_{it}$ for any variable z in the regression, N_t is the number of observations in the regression sample at time t, $\Delta_j z_{it} \equiv z_{it} - z_{it-j}$, and x_{it} is a vector that comprises a quadratic polynomial in the head’s age, and family size. I take out the time-specific averages from the variables to remove the aggregate effects in the data. My focus is on $\hat{\beta}_1$ and $\hat{\beta}_4$ and the model-implied values of the coefficients. The moment $\hat{\beta}_1$ is chosen as it’s informative about the correlation between permanent and transitory shocks, while the moment $\hat{\beta}_4$ is chosen as it weighs more the information on the importance of permanent shocks in shaping the response of consumption to the shocks cumulated over a longer time span.\(^{26}\)

The estimated value of β_1 is 0.12 with a standard error of 0.03, suggesting that about 12 percent of the shocks to current income are translated into consumption. This can be due to the presence of a large transitory component in income, measurement error in income, or different insurance mechanisms available to households for smoothing out fluctuations in disposable income. The estimated value of β_4 is 0.23 with a standard error of 0.03.

I measure mean reversion in household income estimating the coefficient α from the following regression:

$$\Delta y_{it} = \alpha_0 + \alpha \Delta y_{it-1} + \gamma' x_{it} + \epsilon_{it},$$ \hspace{1cm} (25)

where y_{it} is log disposable household income at t, and x_{it} is a vector that includes a quadratic polynomial in the head’s age and dummies for the head’s high school graduation and college completion. As in the previous regressions, I take out the time-specific means from each variable prior to running the regression. The estimated value of α is –0.30 with a standard error of 0.01.

The size of income risk over the life cycle is calculated as the variance of idiosyncratic income growth. For its estimation, I first run cross-sectional regressions of the difference in household log disposable income on a quadratic polynomial in the head’s age and dummies for high school and college using data from the 1981–1997 surveys, when household income

\(^{26}\) I have chosen to focus on $\hat{\beta}_1$ and $\hat{\beta}_4$ for expositional clarity only; adding $\hat{\beta}_2, \hat{\beta}_3$, etc. into the discussion will not bring any extra insights.
was continuously recorded each year. I limit the regression sample to the households with heads of ages 26–65. The unconditional variance of the residuals from those regressions provides an estimate of the proportional risk to household disposable income over the life cycle. The estimated variance is 0.048, and its standard error is 0.002. In all my calibrations, I set the income process parameters such that the variance of household income growth rates equals to its data value. In addition, I set the variance of permanent shocks to 0.01—this is the choice of Kaplan and Violante (2010) which enables matching the rise in the variance of incomes over the life cycle in the U.S.; below, I will elaborate on the consequences of this choice for matching the income moments. The data moments are listed in Table 2. The model is solved using the method of endogenous grid points of Carroll (2006).

5 Results

Table 3 shows the results when the income process contains a permanent random-walk component and households are not allowed to borrow. The outline of this table and the tables to follow is the following.

- Columns (1) and (3) present the amount of insurance against permanent and transitory shocks estimated using equation (2). Specifically, I tabulate \((1 - \hat{\phi})\) and \((1 - \hat{\psi})\) using information on household consumption, and permanent and transitory shocks from the model data. I label them “Model true” estimates in the tables.

- Columns (2) and (4) tabulate the insurance coefficients estimated using equations \((3)\) and \((4)\), \((1 - \hat{\phi}_{BPP})\) and \((1 - \hat{\psi}_{BPP})\), respectively. They are labeled “Model BPP” estimates in the tables. Those estimates are based on the data on household consumption and income from the model, and the moments suggested by Blundell, Pistaferri, and Preston (2008)—unlike the estimates in columns (1) and (3), they do not rely on the knowledge of permanent and transitory shocks to each household’s income at each age.

- Column (5) reports the time discount factor needed to match an aggregate wealth-to-income ratio of 2.5.

- Columns (6) and (7) report on the reaction of consumption changes to current income shocks and income shocks cumulated over the 4-year horizon estimated using equation (7).

- Column (8) shows the persistence of income shocks estimated with equation (25).
Zero borrowing constraints In the first row, I assume that the shocks are not correlated, and one standard deviation of permanent shocks equals 0.10, as in Kaplan and Violante (2010). One standard deviation of transitory shocks is set to 0.14—to fit the variance of household income growth of 0.048 estimated in the data. This results in a faster mean reversion of household incomes than in the data: α is estimated at -0.40 in column (8) relative to the data value of -0.30. To fix this, one would need a higher value for the variance of permanent shocks and a lower value for the variance of transitory shocks but I chose to keep the standard deviation of permanent shocks at 0.10 for comparability with Kaplan and Violante (2010). A lower value for the variance of permanent shocks would be obtained if one was fitting the income process matching the moments $\hat{\alpha}$, the variance of income growth rates, and the rise in the variance of incomes over the life cycle putting relatively larger weights on the latter two moments.

I find that households insure 13% of permanent shocks, and 88% of transitory shocks in the no-borrowing environment—columns (1) and (3). Similarly to Kaplan and Violante (2010), insurance of permanent shocks calculated in accordance with (3)—as in Blundell, Pistaferri, and Preston (2008)—is biased downward. As highlighted in Kaplan and Violante (2010), the bias arises due to the failure of orthogonality between household consumption growth at t, Δc_{it}, and the transitory shock at $t - 2$, ϵ_{it-2}, when households are not allowed to borrow. The bias is lower in magnitude than in Kaplan and Violante (2010) but this could be explained by their choice of a relatively higher ratio of the standard deviation of transitory shocks to the standard deviation of permanent shocks.

Insurance of transitory shocks calculated as in Blundell, Pistaferri, and Preston (2008)
is an unbiased estimate of the true insurance in the model. See the left panel in Figure 1 for the age profile of insurance against permanent and transitory shocks when households are not allowed to borrow. Clearly, the bias in the BPP-estimate of permanent insurance arises due to household inability to borrow at early ages in the life cycle. The sensitivity of consumption at one and four-year horizons, $\hat{\beta}_1$ and $\hat{\beta}_4$, is about twice as large in the model as in the data—the model predicts that consumption under-reacts to income shocks in the data, that is, household consumption is excessively smooth.

In the second row, I assume that the correlation between permanent and transitory shocks equals -0.40, which is close to the values estimated in Section 3 using Italian data. As I keep the variance of household income growth constant across different experiments at 0.048, this results in a higher variability of transitory shocks—a one standard deviation in transitory shocks is 0.16 vs. 0.14 in the first row. The extent of insurance against transitory shocks estimated using the moment (4) is substantially biased upward. This is in line with the prediction in Section 2. Notice that while the true insurance against permanent and transitory shocks is unchanged, the model-based estimate of consumption smoothness $\hat{\beta}_1$—due to a negative correlation between the shocks—is close to the data counterpart of 0.12. The model, however, still overpredicts the extent of consumption reaction to the shocks cumulated over the four-year horizon. Although the short-run smoothness of consumption is well explained by partial smoothing of the permanent shock due to negative correlation between the shocks, this mechanism is not enough for explaining a longer-term smoothness of consumption—a certain degree of partial smoothing of permanent shocks over longer spans is still needed to match $\hat{\beta}_4$.

In the third row, I assume the correlation between the shocks is positive, and equals 0.40. The BPP-estimate of the insurance against transitory shocks is substantially biased downward, as predicted in Section 2. Although the true insurance against permanent and transitory shocks is virtually unchanged, a positive correlation between the shocks is reflected in larger values of consumption sensitivity to the current income shocks and shocks cumulated over the four-year horizon.

While assuming a negative correlation between the shocks is in line with the findings in

23

When the shocks are correlated, the transitory shock can be expressed as $\epsilon = \kappa \xi + \mu$, where $\kappa = \rho_{\xi,\epsilon} \sigma_{\epsilon}/\sigma_{\xi}$ and $\sigma^2_\epsilon = (1 - \rho^2_{\xi,\epsilon})\sigma^2_{\xi}$. Clearly, information on the permanent and transitory shock could be reduced to one state variable if the shocks are perfectly correlated. However, if the shocks are imperfectly correlated, the state vector should include information on ξ and μ, which are mutually orthogonal—the main point, though, is that household decisions will take into account partial smoothing (or amplification in the case of positive correlation) of the permanent shock which is reflected in the correlation between ϵ and ξ.
Section 3, it is possible that the correlation arises due to rare events involving both permanent and transitory changes in income, but the majority of permanent and transitory shocks are still independent. As it is infeasible to properly model potentially a myriad of such events, the (likelihood of) occurrence of all of which could affect household consumption decisions, I will focus below on a “representative” rare event that results in an opposite movement of a permanent and transitory shock on its incidence. This is inspired by two key findings above: first, the permanent and transitory shock are shown to be, on average, negatively correlated in Italian data, and, second, the case of negatively correlated shocks is plausible from the standpoint of consumption data as it may help better fit the sensitivity of consumption to income growth, and help explain excess smoothness of consumption.

Below, I will model this rare event in a stylized way. I first assume that the “rare shock” results in a permanent loss of $d = 20\%$ of household income, and is accompanied by a transitory increase in income of 10% so that, at the time of the shock, household income falls by 10%. The transitory increase in income is meant to represent an unemployment insurance benefit that is exhausted within a year, a severance pay, or a sickness-leave pay in case of a mild/moderate disability.31 I assume that the “rare shock” happens with a $p_d = 5\%$ probability and is an iid event.32

To match the increase in the variance over the life cycle in the previous calibrations, I adjust the standard deviation of permanent shocks downward to 0.09.33 The implied correlation between the permanent shock (which equals the sum of the permanent shock and permanent income loss due to the rare shock) and the transitory shock (equals the sum of the transitory shock and transitory payment at the time of the rare shock) is -0.08.

The results of this experiment are presented in the fourth row of Table 3. Similarly to the calibration in the second row, there’s an upward bias of the BPP-estimate of the insurance against transitory shocks. Since the implied correlation is above -0.40, the bias is numerically

32The numbers for the probability of rare shock and permanent income loss due to the shock are similar to the corresponding numbers in Krebs (2007) for job displacement. They are based on Jacobson, LaLonde, and Sullivan (1993) who, however, showed that short-term earnings losses due to job displacement are higher than long-term losses. Nevertheless, the magnitude and the pattern of earnings losses in the short and long terms are consistent with the effect of disability on head’s earnings in PSID data—see Stephens (2001), Figure 2.

33As in Krebs (2007), I assume that with probability $(1 - p_d)$ household income is permanently raised by a small value $dp_d/(1 - p_d)$. This is done to ensure that income shocks are mean-zero, and is inessential for the results to follow.
smaller. See Panel A of Figure 2 for the age profile of insurance against permanent and transitory shocks when households are not allowed to borrow. As in the environment of no correlation between the shocks, there’s a downward bias in the BPP-estimates of insurance against permanent shocks at early stages of the life cycle; an upward bias in the estimated insurance of transitory shocks is, however, not limited to the stage of the life cycle.

In the fifth row, I experiment with a larger “rare shock” that results in a 40% permanent loss of income. A one standard deviation of the permanent shock is set to 0.04 to match the increase of the life cycle variance in the previous calibrations. This results in the correlation between permanent and transitory shocks of about –0.30. Since the implied correlation is closer in magnitude to the correlation in the second row, the bias in the BPP-estimate of the insurance against transitory shocks as well as the consumption smoothness moments are similar to the corresponding values in the second row. The corresponding age profiles of insurance against permanent and transitory shocks are shown in Figure 2, Panel B. The pattern is qualitatively similar to that in the low rare-shock case, and quantitatively similar to the case when the shocks are correlated period by period (Figure 2, Panel C).

Natural borrowing constraints Table 4 contains the results when households are constrained by natural borrowing limits. The discrepancy between the true and BPP-estimates of insurance against permanent shocks is nearly eliminated, while the insurance of transitory shocks is higher, at 95%—see the first row, and the right panel of Figure 1 for the age profiles of insurance coefficients for permanent and transitory shocks. For the experiments in the second, fourth, and fifth rows of the table, the BPP-estimate of the insurance against transitory shocks is upward-biased, with the highest bias for the cases with a negative correlation between the shocks of –0.40 and a large rare shock; see also Panels A, B and C in Figure 3 for the age profiles of insurance coefficients for permanent and transitory shocks for the cases of low, large rare shocks, and the shocks correlated period-by-period, respectively. The estimated sensitivity of consumption to the shocks cumulated over one and four-year horizons is smaller when natural borrowing constraints are allowed for. When the shocks are negatively correlated, \(\hat{\beta}_1 \) is slightly lower than its data counterpart; the size of \(\hat{\beta}_4 \), however, is still higher in the model than in the data—consumption is still excessively smooth. As Euler equations are likely to hold at equality when borrowing constraints are not tight, the biases in the insurance coefficients estimated with equations (10) and (12) should approximate well the biases seen in the model data. For the parameters in the second row of Table 4, equation (10) predicts a bias in the estimated permanent insurance of about 0.03,
while equation (12) predicts a bias in the transitory insurance of about 0.28. These numbers compare well with the numbers in Table 4. For the case of positive correlation in the third row, the permanent insurance should be underestimated by about 0.02, while the transitory insurance should be underestimated by about 0.21 in accordance with equations (10) and (12)—the numbers are in accord with the numbers in the table.

Summary The results for rare shocks and the shocks correlated period-by-period are quantitatively similar when an implied correlation between the shocks is similar. Clearly, what matters for this result is that a negative (and positive, in the case of period-by-period correlation) permanent shock is partially smoothed by a transitory shock of the opposite sign. This allows to better fit the sensitivity of consumption to current income shocks (the moment $\hat{\beta}_1$). However, because the smoothing is short-lived while the permanent shock doesn’t die out, this mechanism is not enough to explain the sensitivity of consumption to the shocks cumulated over a longer horizon (the moment $\hat{\beta}_4$)—a certain degree of partial smoothing of permanent shocks over longer spans is still needed to fit the consumption moments. Below, I will focus on the case of period-by-period correlated shocks with correlation of −0.40 as this is the value close to my estimate from SHIW data, and is also the value which provides a better fit to the consumption smoothness moments $\hat{\beta}_1$ and $\hat{\beta}_4$ in U.S. data, as opposed to the case of uncorrelated shocks.

Sensitivity analysis In Table 5, I conduct a number of sensitivity experiments. The table is split into two panels: the top panel contains the results for zero borrowing constraints, while the bottom panel contains the results for natural borrowing constraints.

In the first two rows of both panels, I allow for rare shocks, low and large respectively, but I assume away partial compensation of the shock in the form of a positive transitory shock. This eliminates the bias in the BPP-estimates of the insurance against transitory shocks, in agreement with the results in Section 2. While the BPP-estimate of the insurance against permanent shocks is downward-biased when households are not allowed to borrow, the bias gets eliminated when households are allowed to borrow up to the natural limit. Interestingly, the estimates of β_1 and β_4 are similar when the rare shock is low or large, despite a much lower variance of permanent shocks arriving each year in the case when the rare shock is large.

The third row in each panel of Table 5 shows the results when the correlation between the shocks is allowed for but the coefficient of relative risk aversion is set to a higher value.
of 10. Relative to the results in the second rows of Tables 3–4, the insurance coefficients for permanent shocks are higher; interestingly, the sensitivity of consumption to current income shocks and shocks cumulated over 4 years—measured by $\hat{\beta}_1$ and $\hat{\beta}_4$—barely changes despite a much higher value for the coefficient of relative risk aversion. Due to negative correlation, the BPP-estimates of insurance against transitory and permanent shocks are upward-biased even for the case of high individual aversion to risk.

The fourth to sixth rows of the table show the results when households differ in wealth at the start of their working career.34 Overall, the results are very similar to the case when every household starts its working career with zero wealth. The fifth and sixth rows in each panel partition the sample into households who started the life cycle with low and high wealth, respectively. High-wealth (low-wealth) households are those whose wealth at age 26 is above (below) the 75th (25th) percentile of the wealth distribution at age 26. Wealthier households have a larger insurance of permanent shocks under zero and natural borrowing constraints, and a larger insurance of transitory shocks when borrowing is not allowed. Under zero borrowing constraints, there is a more pronounced difference between high- and low-wealth households in consumption sensitivity to the income shocks measured by the coefficients β_1 and β_4.

Autoregressive permanent component In Table 6, I explore the possibility that the permanent component is an autoregressive process with a finite persistence of the shock. The table is split into two panels with the results for zero and natural borrowing constraints. The first two rows in each panel contain the results when the persistence of an AR(1) permanent component, ρ_p, equals 0.99 and the shocks are not correlated. I change the variance of persistent shocks so that the overall increase in the life cycle variance equals to that in the previous calibrations, and adjust the variance of transitory shocks so that the variance of income growth rates equals 0.048. When the shocks are not correlated, the insurance coefficients for transitory shocks are somewhat lower than the values obtained when the permanent component is a random walk. Insurance of permanent shocks is higher relative to the random-walk case. Interestingly, this results in higher values, relative to the random-walk case, of consumption sensitivity to current income shocks and shocks cumulated over the four-year horizon (I will return to this issue shortly). In the second row of each panel the shocks are correlated while the persistence of the permanent shock is kept at 0.99. Similar to the random-walk case with correlated shocks, the insurance coefficients for transitory shocks

34I use PSID data to calibrate the distribution of initial wealth with household wealth data at ages 26–30.
are upward-biased when using consumption and income moments.

In the third and fourth rows of Table 6, I set the persistence of the autoregressive component to a lower value of 0.95. This requires a relatively higher value for the standard deviation of persistent shocks, to match the increase in the variance of incomes over the life cycle, and a relatively lower value for the standard deviation of the transitory shock, to match the variance of income growth rates. Consistent with the findings in Kaplan and Violante (2010), the insurance of permanent shocks is substantially higher for lower values of persistence and is not far from the estimate in Blundell, Pistaferri, and Preston (2008); the insurance of transitory shocks is, however, somewhat smaller relative to the amount of insurance in the random-walk case. Since the standard deviation of the transitory shock is much smaller now, the persistence of income changes estimated with equation (25) is far from the data value—column (8). Strikingly, the moments for consumption sensitivity to income changes at one and four-year horizons are much larger than the corresponding data values and the values implied by the random-walk case—columns (6)–(7). This is an important finding: although assuming lower values for income persistence results in the estimates of insurance against permanent shocks which are in line with the empirical estimate of Blundell, Pistaferri, and Preston (2008), this comes at a cost of substantial overestimation of the sensitivity of consumption growth to current income shocks and shocks cumulated over the four-year horizon, as well as the persistence of income changes. It is easy to illustrate how the relative variances of transitory and persistent shocks, and the persistence matter for an estimate of, e.g., β_1. Since $\beta_1 = \frac{\psi}{\var(\Delta y_{it})}$, and a relatively higher value for the variance of persistent shocks is needed to match the life-cycle increase in the variance of incomes, persistent shocks become relatively more important in income and therefore consumption fluctuations which is reflected in a higher value of the numerator (which equals the covariance of income and consumption growth rates) and, consequently, a higher value of $\hat{\beta}_1$. For the model parameters in the third row, an estimate of β_1 equals 0.53 which is the exact match of the number obtained from the model data in column (6), third row of the bottom panel, when borrowing is allowed up to the natural limits. The same argument applies to the estimates of β_4 when the persistence of shocks is finite. Lastly, similar to the random-

35The BPP-estimate of the insurance coefficient for transitory shocks estimated using equation (4) is substantially biased downward—third row, column (4). This is largely due to a relatively lower value for the standard deviation of the transitory shock. It can be shown that equation (4) implies an estimate of the transitory insurance equal to $1 - \frac{\var(\Delta y_{it})}{(\rho_p - 1)(\psi^2 - \psi^2)}$ for given parameters and estimated covariance of -0.005, this estimate should amount to 0.69 which matches $\hat{\psi}_{\text{BPP}}$ almost exactly for the case of natural borrowing constraints—the third row in the bottom panel.
walk case, consumption is less sensitive to current income shocks and shocks cumulated over the four-year horizon when the shocks are correlated—compare, e.g., columns (6)–(7) in the third and fourth rows in the top or bottom panel.

6 Conclusion

In the literature on consumption and income dynamics, it is routinely assumed that permanent and transitory shocks to household incomes are independent. Using Italian SHIW data, I find a negative correlation between permanent and transitory shocks. Relaxing the assumption of no correlation between the shocks, I show that the insurance against transitory and permanent shocks one may infer from household data on income and consumption is biased upward (downward) if the shocks are negatively (positively) correlated. I also find that the sensitivity of consumption growth to current income growth is lower the more negative is the correlation between permanent and transitory shocks. Using a calibrated life-cycle model with self-insurance, I confirm these predictions quantitatively. While allowing for a negative correlation between the shocks results in a good fit of consumption sensitivity to current income growth, consumption in the model is more sensitive to the shocks cumulated over a longer horizon than in the data—partial smoothing of permanent shocks over longer spans is still needed to fit the consumption smoothness moments. As in Kaplan and Violante (2010), I find that modeling the permanent component as an autoregressive process with the persistence of shocks equal to 0.95 delivers an estimate of the insurance against permanent shocks in line with the estimate in Blundell, Pistaferri, and Preston (2008); yet, this comes at a cost of substantial overprediction of consumption sensitivity to income changes at one and four-year horizons, as well as the persistence of income changes.
References

Figure 1: Insurance coefficients. No correlation

(a) Permanent shocks

(b) Transitory shocks
Figure 2: Insurance coefficients. Correlated shocks. Zero borrowing constraints

Panel A: Low rare shock, implied correlation −0.09

Panel B: Large rare shock, implied correlation −0.29

Panel C: Correlated shocks, correlation −0.40
Figure 3: Insurance coefficients. Correlated shocks. Natural borrowing constraints

Panel A: Low rare shock, implied correlation -0.09

(a) Permanent shocks
(b) Transitory shocks

Panel B: Large rare shock, implied correlation -0.29

(c) Permanent shocks
(d) Transitory shocks

Panel C: Correlated shocks, correlation -0.40

(e) Permanent shocks
(f) Transitory shocks
Table 1: Summary statistics. SHIW data

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min.</th>
<th>Max.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>0.63</td>
<td>0.48</td>
<td>0</td>
<td>1</td>
<td>367</td>
</tr>
<tr>
<td>Head</td>
<td>0.58</td>
<td>0.49</td>
<td>0</td>
<td>1</td>
<td>367</td>
</tr>
<tr>
<td>Spouse</td>
<td>0.28</td>
<td>0.45</td>
<td>0</td>
<td>1</td>
<td>367</td>
</tr>
<tr>
<td>Age</td>
<td>42.75</td>
<td>8.07</td>
<td>28</td>
<td>63</td>
<td>367</td>
</tr>
<tr>
<td>Fam. size</td>
<td>3.56</td>
<td>1.13</td>
<td>1</td>
<td>8</td>
<td>367</td>
</tr>
<tr>
<td>Married</td>
<td>0.76</td>
<td>0.43</td>
<td>0</td>
<td>1</td>
<td>367</td>
</tr>
<tr>
<td>High school grad.</td>
<td>0.36</td>
<td>0.48</td>
<td>0</td>
<td>1</td>
<td>367</td>
</tr>
<tr>
<td>More than high school</td>
<td>0.17</td>
<td>0.37</td>
<td>0</td>
<td>1</td>
<td>367</td>
</tr>
<tr>
<td>Net disposable inc.</td>
<td>29205.82</td>
<td>13914.07</td>
<td>2814.91</td>
<td>83772.76</td>
<td>367</td>
</tr>
<tr>
<td>Expected disposable inc., min</td>
<td>23931.11</td>
<td>9146.19</td>
<td>2627.25</td>
<td>65681.31</td>
<td>367</td>
</tr>
<tr>
<td>Expected disposable inc., max</td>
<td>27714.75</td>
<td>10585.95</td>
<td>2814.91</td>
<td>93830.44</td>
<td>367</td>
</tr>
<tr>
<td>Expected disposable inc., mean</td>
<td>25789.93</td>
<td>9647.13</td>
<td>2733.59</td>
<td>75064.35</td>
<td>367</td>
</tr>
<tr>
<td>Prob. disp. inc.< midpoint</td>
<td>0.48</td>
<td>0.27</td>
<td>0</td>
<td>0.99</td>
<td>367</td>
</tr>
<tr>
<td>Transitory shock</td>
<td>0.01</td>
<td>0.35</td>
<td>-2.16</td>
<td>1.29</td>
<td>367</td>
</tr>
<tr>
<td>Permanent shock</td>
<td>-0.02</td>
<td>0.29</td>
<td>-1.66</td>
<td>1.01</td>
<td>357</td>
</tr>
</tbody>
</table>

Note: Amounts are in thousands of 1995 Italian Liras.
Table 2: Data Moments

<table>
<thead>
<tr>
<th></th>
<th>stat.</th>
<th>s.e.</th>
<th>no. obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption smoothness moments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta c_{it} = \beta_0 + \beta_1 \Delta y_{it} + \gamma' x_{it} + \epsilon_{it}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\beta}_1$</td>
<td>0.12</td>
<td>0.03</td>
<td>1,905</td>
</tr>
<tr>
<td>$\Delta_4 c_{it} = \beta_0 + \beta_4 \Delta_4 y_{it} + \gamma' x_{it} + \epsilon_{it}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\beta}_4$</td>
<td>0.23</td>
<td>0.03</td>
<td>1,357</td>
</tr>
<tr>
<td>Income moments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{var}(\Delta y_{it})$</td>
<td>0.048</td>
<td>0.002</td>
<td>1,971</td>
</tr>
<tr>
<td>$\Delta y_{it} = \alpha_0 + \alpha \Delta y_{it-1} + \gamma' x_{it} + \epsilon_{it}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\alpha}$</td>
<td>-0.30</td>
<td>0.01</td>
<td>1,768</td>
</tr>
</tbody>
</table>

Note: Total consumption is imputed to the sample PSID households. Data for household disposable income and consumption are from the 1981–1997 surveys of the PSID. In the consumption regressions, x_{it} includes a quadratic polynomial in the head’s age, and family size. I subtract the time-specific mean from each variable in the regressions (e.g., $\Delta y_{it} = \Delta \log Y_{it} - \Delta \log Y_t$, where $\Delta \log Y_{it}$ is the difference in household log disposable income before the time-specific average, $\Delta \log Y_t$, is taken out). In the income regression, x_{it} includes a quadratic polynomial in the head’s age, and dummies for high school and college. $\text{var}(\Delta y_{it})$ is calculated as the unconditional variance of residuals from the cross-sectional regressions of the difference in household log disposable income on a quadratic polynomial in the head’s age, and dummies for high school and college. Standard errors are calculated by bootstrap.
Table 3: Insurance coefficients. Zero borrowing constraint. Random walk permanent component.

<table>
<thead>
<tr>
<th>Income process</th>
<th>Permanent shocks</th>
<th>Transitory shocks</th>
<th>Disc. factor</th>
<th>$\hat{\beta}_1$</th>
<th>$\hat{\beta}_4$</th>
<th>$\hat{\alpha}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model true</td>
<td>Model BPP</td>
<td>Model true</td>
<td>Model BPP</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>(1) corr$(\xi, \epsilon)=0.00$</td>
<td>0.13 0.09 0.88 0.88</td>
<td>0.966 0.25 0.49 -0.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma_\xi = 0.10$, $\sigma_\epsilon = 0.14$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) corr$(\xi, \epsilon)= -0.40$</td>
<td>0.13 0.11 0.88 1.13</td>
<td>0.967 0.14 0.41 -0.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma_\xi = 0.10$, $\sigma_\epsilon = 0.16$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) corr$(\xi, \epsilon)= 0.40$</td>
<td>0.13 0.07 0.88 0.69</td>
<td>0.966 0.33 0.55 -0.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma_\xi = 0.10$, $\sigma_\epsilon = 0.12$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Rare shock, low</td>
<td>0.13 0.10 0.88 0.92</td>
<td>0.966 0.23 0.48 -0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma_\xi = 0.09$, $\sigma_\epsilon = 0.14$ implied corr$(\xi, \epsilon)= -0.08$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) Rare shock, large</td>
<td>0.14 0.13 0.88 1.07</td>
<td>0.966 0.18 0.45 -0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma_\xi = 0.04$, $\sigma_\epsilon = 0.14$ implied corr$(\xi, \epsilon)= -0.29$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The income process for log household disposable income, y_{it}, is $y_{it} = p_{it} + \epsilon_{it}$, $p_{it} = \rho p_{it-1} + \xi_{it}$; $\xi_{it} \sim \text{iid}N(0, \sigma_\xi^2)$, $\epsilon_{it} \sim \text{iid}N(0, \sigma_\epsilon^2)$, $\rho_p = 1$. “Model true” insurance of permanent and transitory shocks is estimated as $(1 - \hat{\phi})$ and $(1 - \hat{\psi})$, respectively, using the estimates of $\hat{\phi}$ and $\hat{\psi}$ from regression (2): $\Delta c_{it} = \phi \xi_{it} + \psi \epsilon_{it} + \text{error}$, where Δc_{it} is the change in log consumption. “Model BPP” insurance of permanent shocks is estimated as $1 - \frac{E[\Delta c_{it} \Delta y_{it+1}]}{E[\Delta y_{it} \Delta y_{it+1}]}$, while “Model BPP” insurance of transitory shocks is estimated as $1 - \frac{E[\Delta c_{it} \Delta y_{it+1}]}{E[\Delta y_{it} \Delta y_{it+1}]}$. $\hat{\beta}_1$ is an estimate from the regression $\Delta c_{it} = \beta_0 + \beta_1 \Delta y_{it} + \text{error}$; $\hat{\beta}_4$ is an estimate from the regression $c_{it} - c_{it-4} = \beta_0 + \beta_4 (y_{it} - y_{it-4}) + \text{error}$; $\hat{\alpha}$ is an estimate from the regression $\Delta y_{it} = \alpha_0 + \alpha_1 \Delta y_{it-1} + \text{error}$. The values of $\hat{\beta}_1$, $\hat{\beta}_4$, and $\hat{\alpha}$ estimated from the data are listed in Table 2. “Rare shock” is an iid event that occurs with probability $p_d = 0.05$. Low (large) rare shock entails a permanent income loss of $d = 20$ (40)%. At the time of the rare shock, households receive $\kappa \times d \%$ in transitory income, where κ equals 0.5.
Table 4: Insurance coefficients. Natural borrowing constraint. Random walk permanent component.

<table>
<thead>
<tr>
<th>Income process</th>
<th>Permanent shocks</th>
<th>Transitory shocks</th>
<th>Disc. factor</th>
<th>β_1</th>
<th>β_4</th>
<th>$\hat{\lambda}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model true</td>
<td>Model BPP</td>
<td>Model true</td>
<td>Model BPP</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>(1) $\text{corr}(\xi, \epsilon) = 0.00$</td>
<td>0.12</td>
<td>0.11</td>
<td>0.95</td>
<td>0.95</td>
<td>0.969</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>$\sigma_\xi = 0.10$, $\sigma_\epsilon = 0.14$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) $\text{corr}(\xi, \epsilon) = -0.40$</td>
<td>0.12</td>
<td>0.14</td>
<td>0.95</td>
<td>1.22</td>
<td>0.970</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>$\sigma_\xi = 0.10$, $\sigma_\epsilon = 0.16$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) $\text{corr}(\xi, \epsilon) = 0.40$</td>
<td>0.13</td>
<td>0.10</td>
<td>0.95</td>
<td>0.74</td>
<td>0.966</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>$\sigma_\xi = 0.10$, $\sigma_\epsilon = 0.12$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Rare shock, low</td>
<td>0.13</td>
<td>0.12</td>
<td>0.95</td>
<td>0.99</td>
<td>0.969</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>$\sigma_\xi = 0.09$, $\sigma_\epsilon = 0.14$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>implied $\text{corr}(\xi, \epsilon) = -0.08$</td>
</tr>
<tr>
<td>(5) Rare shock, large</td>
<td>0.15</td>
<td>0.16</td>
<td>0.94</td>
<td>1.14</td>
<td>0.968</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>$\sigma_\xi = 0.04$, $\sigma_\epsilon = 0.14$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>implied $\text{corr}(\xi, \epsilon) = -0.29$</td>
</tr>
</tbody>
</table>

Note: See note to Table 3.
<table>
<thead>
<tr>
<th>Income Process</th>
<th>Permanent shocks</th>
<th>Transitory shocks</th>
<th>Model true</th>
<th>Model BPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero borrowing constraint</td>
<td>(1) Rare shock, low, no replacement</td>
<td>0.14</td>
<td>0.10</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>(2) Rare shock, large, no replacement</td>
<td>0.12</td>
<td>0.18</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>(3) corr((\xi,\epsilon)) = -0.40, CRRA 10</td>
<td>0.17</td>
<td>0.15</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>(4) corr((\xi,\epsilon)) = -0.40, add initial wealth</td>
<td>0.14</td>
<td>0.13</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>(5) corr((\xi,\epsilon)) = -0.40, low initial wealth</td>
<td>0.13</td>
<td>0.13</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>(6) corr((\xi,\epsilon)) = -0.40, high initial wealth</td>
<td>0.16</td>
<td>0.18</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>(1) Rare shock, low, no replacement</td>
<td>0.13</td>
<td>0.13</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>(2) Rare shock, large, no replacement</td>
<td>0.14</td>
<td>0.14</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>(3) corr((\xi,\epsilon)) = -0.40, CRRA 10</td>
<td>0.17</td>
<td>0.17</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>(4) corr((\xi,\epsilon)) = -0.40, add initial wealth</td>
<td>0.14</td>
<td>0.13</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>(5) corr((\xi,\epsilon)) = -0.40, low initial wealth</td>
<td>0.13</td>
<td>0.13</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>(6) corr((\xi,\epsilon)) = -0.40, high initial wealth</td>
<td>0.18</td>
<td>0.18</td>
<td>0.94</td>
</tr>
</tbody>
</table>

Note: See note to Table 3.
<table>
<thead>
<tr>
<th>Income process</th>
<th>Persistent shocks</th>
<th>Transitory shocks</th>
<th>Disc. factor</th>
<th>β_1</th>
<th>β_4</th>
<th>$\hat{\alpha}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model true (1)</td>
<td>Model BPP (2)</td>
<td>Model true (3)</td>
<td>Model BPP (4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>Zero borrowing constraint</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) AR(1), pers. 0.99, corr(ξ, ϵ)=0.00</td>
<td>0.20</td>
<td>0.16</td>
<td>0.86</td>
<td>0.85</td>
<td>0.960</td>
<td>0.31</td>
</tr>
<tr>
<td>$\sigma_\xi = 0.12$, $\sigma_\epsilon = 0.13$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) AR(1), pers. 0.99, corr(ξ, ϵ)=–0.40</td>
<td>0.23</td>
<td>0.19</td>
<td>0.87</td>
<td>1.15</td>
<td>0.961</td>
<td>0.20</td>
</tr>
<tr>
<td>$\sigma_\xi = 0.12$, $\sigma_\epsilon = 0.16$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) AR(1), pers. 0.95, corr(ξ, ϵ)=0.00</td>
<td>0.32</td>
<td>0.31</td>
<td>0.83</td>
<td>0.62</td>
<td>0.944</td>
<td>0.60</td>
</tr>
<tr>
<td>$\sigma_\xi = 0.20$, $\sigma_\epsilon = 0.06$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) AR(1), pers. 0.95, corr(ξ, ϵ)=–0.40</td>
<td>0.32</td>
<td>0.33</td>
<td>0.82</td>
<td>1.57</td>
<td>0.945</td>
<td>0.49</td>
</tr>
<tr>
<td>$\sigma_\xi = 0.20$, $\sigma_\epsilon = 0.11$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural borrowing constraint</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) AR(1), pers. 0.99, corr(ξ, ϵ)=0.00</td>
<td>0.20</td>
<td>0.18</td>
<td>0.92</td>
<td>0.91</td>
<td>0.963</td>
<td>0.27</td>
</tr>
<tr>
<td>$\sigma_\xi = 0.12$, $\sigma_\epsilon = 0.13$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) AR(1), pers. 0.99, corr(ξ, ϵ)=–0.40</td>
<td>0.22</td>
<td>0.22</td>
<td>0.94</td>
<td>1.26</td>
<td>0.967</td>
<td>0.14</td>
</tr>
<tr>
<td>$\sigma_\xi = 0.12$, $\sigma_\epsilon = 0.16$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) AR(1), pers. 0.95, corr(ξ, ϵ)=0.00</td>
<td>0.37</td>
<td>0.37</td>
<td>0.92</td>
<td>0.70</td>
<td>0.952</td>
<td>0.53</td>
</tr>
<tr>
<td>$\sigma_\xi = 0.20$, $\sigma_\epsilon = 0.06$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) AR(1), pers. 0.95, corr(ξ, ϵ)=–0.40</td>
<td>0.41</td>
<td>0.41</td>
<td>0.93</td>
<td>1.71</td>
<td>0.957</td>
<td>0.40</td>
</tr>
<tr>
<td>$\sigma_\xi = 0.20$, $\sigma_\epsilon = 0.11$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: See note to Table 3.
Appendix A. Data and sample selection

The Consumer Expenditure Survey

I use CEX data on total consumer expenditures and food consumption, available at the NBER website. The data set spans the period 1980–2003. The CEX is designed by the Bureau of Labor Statistics to construct the CPI at different levels of aggregation. The survey publishes at most four quarters of information on individual consumption, along with demographic information. The NBER extracts lump quarterly records into one annual record.

Total consumption is defined as household total expenditures on nondurables (food at home, food at work, food away from home, clothes, personal care items, utility payments, transportation including gasoline and insurance, recreation services, gambling and charity), household supplies and equipment, rents, medical services, vehicles and auto parts, books and publications, education, interest payments, housing property taxes, contributions to private pensions and self-employed retirement. The measure is defined similarly to Blundell, Pistaferri, and Preston (2008).

Households may enter the survey in the same year but in different quarters and months of a quarter. If household consumption record relates both to years t and $t + 1$, I assume that annual consumption refers to year t if that year contains at least six months of consumption records, and to year $t + 1$ otherwise. In the CEX, the head of a household is the person who owns or rents the unit of household residence. In the PSID, the head of a household is male, unless he is permanently disabled (see Hill 1992). To make the definitions of heads comparable, I assume that heads are males in the CEX families with couples.

My sample selection steps are the following. First, I keep only the households that report expenditures in all four quarters of the year, and who are classified as full income reporters. I further keep married couples, with heads who are not self-employed, of age above 25 but below 71; and with family size equal or greater than 2 family members. I drop households whose heads attend college, part-time or full-time; or do not have education, race, age, or state of residence records. I also drop households that report zero expenditures on food at home. I deflate food at home, food away from home, total food as well as total household expenditures by the Bureau of Labor Statistics (BLS) food at home, food away, total food and all items CPI with the base 100 in 1982–1984, respectively. I use non-seasonally adjusted, U.S. city average CPI indices for March of the respective year. I further drop households whose expenditures on food at home and away from home exceed household disposable income. Household disposable income is defined as the difference between household taxable income and federal income taxes. Household taxable income, in turn, is the sum of wages and salaries, rents, dividends and interest, business and farm income, pensions, social security benefits, supplemental security income, unemployment compensation, and workers’ compensation for all family members. To eliminate the influence of outliers, I drop observations below the 1st and above the 99th percentiles of the annual total food distributions.

I utilize information on 23,133 households whose heads are of ages 26–65 to estimate the relationship between food consumption and total consumption. The relationship is later used for imputation of the total consumption to the sample PSID households. I use income information for households whose heads are of ages 26–70 to estimate the deterministic profile
of life-cycle growth in household disposable income.

The Panel Study of Income Dynamics

I use PSID data from the 1981–2003 waves, the same time span during which I have data on consumption and demographics in the CEX. To allow for a more representative sample, I drop households that are part of the Survey of Economic Opportunity (SEO) subsample. The PSID consistently collected only two items of consumption over time: food consumption at home and food consumption away from home (excluding food at work). Since I am interested in total household consumption and income dynamics over the life cycle, I impute total consumption to the PSID households. Most of the studies that use food consumption from the PSID assume that food consumption recorded in survey year \(t \) reflects the typical weekly food consumption flow in year \(t - 1 \). In this paper, I adopt the same strategy. Over the time span considered, the PSID did not collect food consumption data in 1988 and 1989. Correspondingly, my final sample of analysis lacks food and total consumption data for 1987 and 1988. Food away from home and food at home are deflated by their respective CPIs taken from the BLS.

The sample selection details are as follows. I first make the age series consistent throughout the survey years. An individual’s age in adjacent years can be the same or differ by more than one year since households may be interviewed in different months of a year. I take the first record on age when an individual appears as the head of household and impute age in other years using that record. I then drop households whose heads are younger than 26 or older than 70, and all female-headed households. I then choose continuously married heads with the longest spell of an uninterrupted headship. I further drop households whose heads had a spell of self-employment, and keep those who never experienced significant changes in family composition, that is those who had no changes at all or changes in members other than the head or wife. I drop households with inconsistent race records (e.g., households whose heads report being white in one survey year and black in some other year), and households with heads who become permanently disabled or continue schooling after age 26. I set head’s education to the maximum years of schooling reported by the head during sample years. Heads are then assigned to three educational categories: high school dropouts (with years of schooling below 12), high school graduates (with years of schooling above 11 but less than 16 years), and college graduates (with years of schooling equal to or exceeding 16 years). I further drop observations with missing records on head’s or household disposable income; with zero records on head’s income when heads are of ages 26 to 65, at their pre-retirement stage of the life cycle. I also drop income outliers and single-headed households. An income outlier is defined as an observation on household disposable income at time \(t \) when the growth rate in household disposable income between periods \(t - 1 \) and \(t \) is above 500 percent or below −80 percent. I then select, for each household, the longest spell of an uninterrupted headship with all relevant information. I keep those who were born between 1912 and 1978, and whose total food expenditures do not exceed household disposable income. I also drop observations with household food expenditures above the 99th or below the 1st percentiles of the annual food distributions. Similar to my selection rules for the CEX sample, I drop observations with expenditures on food at home equal to zero. In the PSID, income recorded in year \(t \) refers to income earned in year \(t - 1 \). Conformably with income observations, I
assume that demographic information and household food expenditures recorded in year t refer to a previous year.

Before 1994, the PSID recorded annual household expenditures on food at home or away from home. In 1994, the PSID started recording food at home and food away from home at different frequencies—daily, weekly, biweekly, monthly, or annual frequency. For those years, I use household food records at the monthly or weekly frequency. I lose a small number of observations on household food expenditures reported at other frequencies. Most of them, when converted to annual amounts, were clear outliers.

The PSID estimated household federal income taxes for 1980–1991. Starting in 1992, the PSID discontinued calculation of federal income taxes. Since my data extend well beyond 1992, I use the TAXSIM tool at the NBER to calculate a consistent series of household federal income taxes and social security withholdings. I assume that family members other than the head and wife are filing their tax returns separately. Household disposable income is then calculated as the sum of the head’s and wife’s labor income, their combined transfer income, transfer income of all other family members, taxable income of other family members less federal income taxes and social security withholdings for the head and wife and all other family members. I also add the total family social security income for 1994–2003 to the measure of disposable income since the records on head’s and wife’s transfer income and transfer income of other family members exclude social security income in those years.

Imputation of Consumption

In this appendix, I describe the procedure used to impute total consumption to the PSID households. Absent data on total consumption in the PSID, imputation is usually done in order to exploit the panel structure of the PSID. Skinner (1987), using the 1972–1973 and 1983 waves of the CEX, showed that total household consumption tightly relates to several consumption items, also available in the PSID (food at home and away from home, number of vehicles owned, and housing rent). Moreover, he showed that this relationship is stable over time. Blundell, Pistaferri, and Preston (2005) pioneered a structural approach to imputation—inverting the food demand equation estimated on CEX data. They relate food consumption to nondurable expenditures, household demographics, price indices, time dummies, cohort dummies, and nondurable expenditures interacted with time dummies and the head’s education category. I run a similar regression, and use the coefficients from this regression to impute total consumption to the PSID households. In the OLS setting, the estimated elasticities may be biased due to measurement error in total expenditures, and endogeneity of food and total consumption. I therefore follow Blundell, Pistaferri, and Preston (2008), and instrument log total expenditures (and its interactions with year and education dummies) with the head’s and wife’s education-year-cohort specific averages of log hourly wages (and their interactions with year and education dummies). The results of an IV regression of food consumption on total expenditures are presented in Table A-1. The estimated elasticity of food consumption with respect to total expenditures is high in the 1980s, and drops steadily to about 0.60 in 2002.
Table A-1: IV Regression of Food Expenditures on Total Expenditures. CEX Data: 1980–2002

Log total cons.	0.595***	Log total cons. x HS	0.025
Log total cons. x 1980	0.111***	Log total cons. x coll.	0.114***
Log total cons. x 1981	0.093***	Log food CPI	0.320
Log total cons. x 1982	0.081***	Log fuel-util. CPI	0.099
Log total cons. x 1983	0.076***	White	0.053***
Log total cons. x 1984	0.069***	Fam. size	0.073***
Log total cons. x 1985	0.067***	HS	–0.302
Log total cons. x 1986	0.059***	Coll.	–1.288***
Log total cons. x 1987	0.055***	Age	0.028***
Log total cons. x 1988	0.057***	Age sq./100	–0.024***
Log total cons. x 1989	0.052***	Born 1924–1932	0.018
Log total cons. x 1990	0.046***	Born 1933–1941	0.025
Log total cons. x 1991	0.039***	Born 1942–1950	0.027
Log total cons. x 1992	0.036***	Born 1951–1959	0.033
Log total cons. x 1993	0.033***	Born 1960–1968	0.053
Log total cons. x 1994	0.031***	Born 1969–1978	0.082*
Log total cons. x 1995	0.026***	Northeast	0.049***
Log total cons. x 1996	0.019***	Midwest	–0.008
Log total cons. x 1997	0.020***	South	0.002
Log total cons. x 1998	0.015***	Adj. R sq.	0.408
Log total cons. x 1999	0.012***	F	216.4
Log total cons. x 2000	0.010***	N	23,133
Log total cons. x 2001	0.004***	(3.37)	

Notes: t-statistics in parentheses. Instruments for log total consumption (and its interaction with year and education dummies) are the averages of log head’s and wife’s wages specific to cohort, education, and year (and their interactions with year and education dummies). *** significant at the 1% level, ** significant at the 5% level, * significant at the 10% level.