Chapter 16: Micro-Foundations: Consumption

Instructor: Dmytro Hryshko

Why Study Consumption?

- Consumption is about $2 / 3$ of GDP.
- Is our consumption function $C=C(Y-T)$ too simplistic? Importantly, is it realistic?

J. M. Keynes's Conjectures About the Consumption Function

(1) $0 \leq M P C \leq 1$: out of each additional dollar, we spend MPC and save $1-M P C$ dollars.
(2) The average propensity to consume, $A P C=\frac{C}{Y}$, falls as income increases. I.e., richer people save a higher proportion of their incomes.
(3) Consumption is irresponsive to the real interest rate.

The Keynesian Consumption Function

Summarizing, the Keynesian consumption function can be written as:

$$
\begin{gathered}
C=\bar{C}+c \times Y, \quad \bar{C}>0, \quad 0<c<1 \\
A P C=\frac{C}{Y}=\frac{\bar{C}}{Y}+c
\end{gathered}
$$

Consumption, C

Successes and Failures

Successes:

- Household data: $0<M P C<1, A P C$ is smaller for higher income households.
- Aggregate data (in-between the wars, when income was low): the ratio of C to Y was high; Y was the primary determinant of C.

Failures:

- Falling $A P C+$ rising incomes during the WWII would lead to a secular stagnation-a long depression in absence of changes in G or T. This prediction about falling APC did not hold.
- S. Kuznets assembled consumption and income data back to 1869. $\frac{C}{Y}$, i.e. the $A P C$ was stable.

Reconciliation of successes and failures: two consumption functions-for the short- and the long-runs.

Consumption, C

I. Fisher and the Intertemporal Choice

- In reality consumption responds not only to changes in current income but also to changes in (expected) income from future periods.

Let consumer live for 2 periods: period 1-youth/adulthood, period 2—old age. Let S_{1} be savings in period 1; C_{j} and Y_{j} are consumption and income in period $j(j=1,2)$; r-the real interest rate.
Then, $S_{1}=Y_{1}-C_{1}, C_{2}=S_{1}(1+r)+Y_{2}$. Plugging S_{1} into the second equation, we obtain the intertemporal budget constraint:

$$
C_{1}+\frac{C_{2}}{1+r}=Y_{1}+\frac{Y_{2}}{1+r} .
$$

Optimization

If the preferences are represented by utility function $U=U\left(C_{1}, C_{2}\right)$, then the consumer chooses C_{1} and C_{2} that bring the highest utility index such that the budget constraint is exhausted.

Second-period consumption, C_{2}
$(1+r) Y_{1}+Y_{2}$

Consumer's budget constraint

Saving

First-period consumption, C_{1}

Optimization Contd. (1)

- The indifference curve: any combination of C_{1} and C_{2} that bring the same utility index U. The slope of indifference curve is defined from: $d U=M U_{1} d C_{1}+M U_{2} d C_{2}$, or $0=M U_{1} d C_{1}+M U_{2} d C_{2}$, i.e., $\frac{d C_{2}}{d C_{1}}=-\frac{M U_{1}}{M U_{2}}$.
- The slope of the budget constraint: $-(1+r)$.
- When consumer maximizes utility, on the margin, the benefit of adjusting his optimal bundle of $\left(C_{1}^{*}, C_{2}^{*}\right)$ should be zero.
The period- 1 cost of reducing consumption by $d C_{1}$ is $M U_{1} \times d C_{1}$, and the period-2 benefit of this reduction is $M U_{2} \times d C_{1} \times(1+r)$.

Thus, at the optimum: $M U_{1} \times d C_{1}=M U_{2} \times d C_{1} \times(1+r)$, or

$$
-\frac{M U_{1}}{M U_{2}}=-(1+r)
$$

Optimization Contd. (2)

I.e., the highest possible utility is achieved at the point $\left(C_{1}^{*}, C_{2}^{*}\right)$, where the slope of the indifference curve is equal to the slope of the budget constraint.

From the constraint in nominal terms to the

CONSTRAINT IN REAL TERMS

In nominal terms, the budget constraint can be derived going through the following steps. If you save $\$ 1$ of income in period 1 , you will be entitled to $\$(1+i)$ in period 2. Denote the price of 1 unit of consumption in period 1 as P_{1}, P_{2} is the same for period 2 .

Your endowments of goods 1 and 2 are equal to Y_{1} and Y_{2}, respectively. Their nominal value is $P_{1} C_{1}$ and $P_{2} C_{2}$.

Savings in the first period in nominal terms are $S_{1}=P_{1}\left(Y_{1}-C_{1}\right)$. Next-period nominal resources are $(1+i) P_{1}\left(Y_{1}-C_{1}\right)+P_{2} Y_{2}$ and $P_{2} C_{2}=(1+i) P_{1}\left(Y_{1}-C_{1}\right)+P_{2} Y_{2}$. Divide the RHS and the LHS of the equation by P_{2} to obtain,

$$
\begin{aligned}
C_{2} & =(1+i) \frac{P_{1}}{P_{2}}\left(Y_{1}-C_{1}\right)+Y_{2} \\
& =\frac{1+i}{1+\pi}\left(Y_{1}-C_{1}\right)+Y_{2}=(1+r)\left(Y_{1}-C_{1}\right)+Y_{2}
\end{aligned}
$$

Income and substitutions effects (1)

This boils down to the lifetime constraint in real terms:

$$
C_{1}+\frac{C_{2}}{1+r}=Y_{1}+\frac{Y_{2}}{1+r} .
$$

Compare it to the constraint for static optimization with two distinct goods and income, l :

$$
P_{X} X+P_{Y} Y=I
$$

In terms of this notation, $1=P_{X}, \frac{1}{1+r}=P_{Y}$, and $Y_{1}+\frac{Y_{2}}{1+r}=l$. In our dynamic constraint, the price of C_{1} is normalized to 1 , and the price of C_{2} in terms of C_{1} is $\frac{1}{1+r}$.

If r increases, C_{2} becomes cheaper in terms of C_{1}.

Income and Substitution Effects (2)

$$
C_{1}+\frac{C_{2}}{1+r}=Y_{1}+\frac{Y_{2}}{1+r} .
$$

If Y_{1} or Y_{2} changes, this impacts only the lifetime income. Hence, these changes will cause changes in (C_{1}^{*}, C_{2}^{*}) due to the income effect.

If r changes, it impacts both the lifetime income and the relative price of consumption in periods 1 and 2 . Thus, the substitution effect will be more complicated and will be different for savers ($C_{1}^{*}<Y_{1}$) versus borrowers $\left(C_{1}^{*}>Y_{1}\right)$.

Income and Substitution Effects (3)

- If Y_{1} or Y_{2} increases, both C_{1} and C_{2} increase, provided they are normal goods.
- Thus, the timing of income is irrelevant for current consumption decisions if the consumer is not constrained in borrowing.
- Effects on C_{1}^{*} and C_{2}^{*}, following a change in the real interest rate, depend on whether the consumer is a saver $\left(C_{1}<Y_{1}\right)$, or a borrower, $\left(C_{1}>Y_{1}\right)$.
- If the consumer is a saver and $r \uparrow, C_{1}$ should increase because of the income effect, and decrease because of the substitution effect (since the price of the period-2 consumption is now lower). The final change in C_{1} is ambiguous; C_{2}, though, increases unambiguously.

Second-period consumption, C_{2}

First-period consumption, C_{1}

Liquidity Constraints

If the consumer is a would-be-'borrower' but cannot borrow, i.e., is liquidity constrained, then this consumer's C_{1} will be equal to Y_{1}.

Thus, for liquidity constrained consumers current consumption is determined by current income.
(a) The Borrowing Constraint Is Not Binding

(b) The Borrowing Constraint Is Binding

Consider first the problem without liquidity constraints. Then, $\left(C_{1}^{*}, C_{2}^{*}\right)$ should satisfy 2 equations. The Euler equation:

$$
M U_{1}\left(C_{1}^{*}\right)=(1+r) M U_{2}\left(C_{2}^{*}\right)
$$

and the budget constraint:

$$
C_{1}^{*}+\frac{C_{2}^{*}}{1+r}=Y_{1}+\frac{Y_{2}}{1+r}
$$

We're assuming that the marginal utility in period 1 is a function of consumption in period 1 only. Similarly, for period 2.

With liquidity (borrowing) constraints, C_{1} cannot be larger than Y_{1}, that is, $C_{1} \leq Y_{1}$. If the unconstrained problem gives you $C_{1}^{*} \leq Y_{1}$, then we say the constraint is not binding-consumer is a saver anyways. Otherwise, if $C^{*}>Y_{1}$, the maximum this consumer can have in period 1 is Y_{1}. Summarizing, $C_{1, b c}^{*}=\min \left\{C_{1}^{*}, Y_{1}\right\}$; $C_{2, b c}^{*}=C_{2}^{*}$ if $C_{1, b c}^{*}=C_{1}^{*}, C_{2, b c}^{*}=Y_{2}$ otherwise.

Example

Let the utility function be $U\left(C_{1}, C_{2}\right)=\log \left(C_{1}\right)+\beta \log \left(C_{2}\right)$, where \log is the natural logarithm. Let $Y_{1}=40, Y_{2}=80, r=0.05$, $\beta=0.90$. First, assume that consumer is unconstrained.

For this utility function, $M U_{1}=\frac{1}{C_{1}}$, and $M U_{2}=\beta \frac{1}{C_{2}}$. The Euler equation tells us that $\frac{1}{C_{1}}=\beta(1+r) \frac{1}{C_{2}}$, or $C_{2}^{*}=\beta(1+r) C_{1}^{*}$. Plug this result into the budget constraint to obtain,
$C_{1}+\frac{\beta(1+r) C_{1}^{*}}{1+r}=Y_{1}+\frac{Y_{2}}{1+r}$, or $C_{1}^{*}=\frac{1}{1+\beta}\left[Y_{1}+\frac{Y_{2}}{1+r}\right]=\frac{1}{1.90}(40+80 /(1.05)) \approx 61$. Thus,
$C_{2}^{*}=0.90 *(1.05) * 61 \approx 57.8$.
If consumer is constrained this implies that $C_{1, b c}^{*}<Y_{1}$, and $C_{1, b c}^{*}=\min \{61,40\}=40$. Also, $C_{2, b c}^{*}=80$. You can also show that the liquidity constrained consumer will be worse off.

The Life-Cycle Hypothesis

- Idea: want to smooth consumption over the life cycle. Thus, need to save during the working life to support consumption during retirement.

Assume consumer prefers a smooth consumption path; will live T more years; will work for another R years; has wealth of W; and will receive a sure income Y during the working years.

The lifetime wealth is $W+R \times Y$. Then,
$C=(W+R \times Y) / T=W / T+(R / T) \times Y=\alpha \times W+\beta \times Y$.
Thus, $\frac{C}{Y}=\alpha \times(W / Y)+\beta$.
In the short run, for a fixed W, an increases in Y leads to a falling $A P C$; in the long run, W and Y grow together, and C / Y is stable.

Milton Friedman's Permanent Income Hypothesis

Milton Friedman postulated the following model of consumption:

$$
\text { Income : } \quad Y=Y^{\top}+Y^{P}
$$

$$
\text { Consumption: } \quad C=Y^{P} \text {. }
$$

Y^{P} is the permanent income (the component of income that persists over time); Y^{\top} is the transitory income (short-lived components of income such as bonuses, overtime, windfalls from lottery etc.)

The Permanent Income Hypothesis (PIH)

Implications:

- Consumption changes by the magnitude of a change in permanent income. Transitory changes in income are predominantly saved.
- $A P C=\frac{C}{Y}=\frac{Y^{P}}{Y}$. In the household studies, most of variation in $\frac{Y^{P}}{Y}$ comes from the transitory variation in income. Thus, if $Y>Y^{P}, C<Y$, and the APC is falling.
- In the long time series, most of variation in Y comes from the variation in Y^{P}, and so $A P C$ will be stable.

Hall's Formulation of the PIH

PIH: consumption depends on Y^{P}, and therefore on expectations of the lifetime resources.

Robert Hall: if the PIH holds, and consumers form rational expectations, then changes in consumption are unpredictable. I.e., (the level of) consumption is a martingale, and consumption responds only to the 'news' in income.

Importantly, under the PIH only unexpected changes in policy influence consumption.

