
A Note on the Solow Model.

Instructor: Dmytro Hryshko. ECON 385.

Households and production. We assume that a closed economy produces one unique final

good. A representative firm utilizes a production function F (K,L) to produce all of the econ-

omy’s output, Y . We assume that production function is constant returns to scale in K and

L: F (zK, zL) = zF (K,L) = zY .1 That is, doubling (z = 2) the use of K and L doubles the

amount of output produced.

Market structure. We assume that households are homogeneous (identical) and save a con-

stant fraction of income, s. Households own labor and capital in the economy. At time t, the

representative firm purchases one unit of L at the labor market at the price w(t). The real rental

price of one unit of capital at time t is equal to R(t) = r(t) + δ, where r(t) is the real interest

rate and δ is the depreciation rate (see our notes on investment). Households purchase the final

good for consumption and investment purposes. We set the price of the final good equal to one

in all periods. Thus, w(t) is the real wage and it is measured in terms of the amount of final

goods afforded per one hour worked. Similarly, R(t) is the amount of final goods per one unit of

capital rented out to the firm. We assume that labor and capital markets, and the final goods

market are competitive.

At each point in time, a competitive firm maximizes profits

max
K>0,L>0

π = Y − wL−RK = F (K,L)︸ ︷︷ ︸
revenue

− (wL+RK)︸ ︷︷ ︸
costs

. (1)

The firm’s objective is to choose non-negative amounts of K and L that bring the maximum

profit. Denote the profit-maximizing choice as (K∗, L∗); FK(K,L) as the marginal product

of capital, and FL(K,L) as the marginal product of labor. At this choice, the following two

conditions should be simultaneously satisfied:

FK(K∗, L∗) = R (2)

FL(K∗, L∗) = w. (3)

1Note that production function is increasing returns to scale in K and L if F (zK, zL) > zY ; decreasing returns
to scale—if F (zK, zL) < zY .



Consider the first equation. If it is not satisfied, say FK(K∗, L∗) > R, then the marginal

product of capital is higher than the marginal cost of capital and therefore raising K∗ marginally

will bring more profits, which contradicts our assumption that K∗ is optimal.

Thus, in the equilibrium, π = F (K,L) − FK(K,L)K − FL(K,L)L. Notice that we ignored

stars in notation to highlight the fact that the observed choices of K and L are always optimal.

The assumption of perfect competition and constant returns to scale production function imply

zero profits for the representative firm. This result follows from the Euler theorem. Thus, factor

payments exhaust the total revenue, and, at each point in time, Y = wL+RK.

Capital is accumulated in the economy in accordance with the following equation:

∆K = I − δK, (4)

where I is the aggregate investment in the economy and δ is the depreciation rate. We assume

that the economy is endowed with some positive amount of capital and labor at its initiation.

Since the economy is closed all household’s savings are channeled into domestic investment and

so

∆K = sY − δK = sF (K,L)− δK, (5)

where, as noted before, s is the constant savings rate.

Equilibrium. Equilibrium in the economy is defined as the path of allocations, C, Y , K, and

prices w and R, given the amount of labor resources and the initial capital stock.

Define output per worker as ypw = Y
L , and capital per worker as kpw = K

L . By our assumption

on the production function, zY = F (zK, zL). Let z ≡ 1
L . Thus, ypw = Y

L = F (KL ,
L
L) =

f(kpw), where we assumed that F (KL , 1) = f(kpw). From our calculus note, we know that
∆kpw
kpw

= ∆K
K − ∆L

L = sF (K,L)−δK
K − ∆L

L = sF (K,L)/L
K/L − δ − ∆L

L = sypw
kpw
− (δ + n). We have

made an assumption that working population is growing at a constant rate n. Thus, ∆kpw =

sypw − δkpw = sf(kpw) − (δ + n)kpw. This is the law of motion for capital per worker in the

economy without technological growth. We argued in class that the economy will tend to the

steady state equilibrium where ∆kpw = 0, or when sf(k∗pw) = (n+ δ)k∗pw.

The term (n + δ)kpw can be called the break-even investment. It measures the amount of
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investment per worker needed to maintain capital per worker at its previous level kpw.

Assume, for example, that kpw = 10, δ = 0.1, and n = 1. Using capital implies that in the

next period, for a fixed population size, capital per worker will fall by δkpw = 0.1 ∗ 10 = 1 unit.

Furthermore, population will double next period, and, to preserve the same capital per worker

in the next period, we will need to “endow” each new worker with exactly the same kpw = 10.

Thus, the total investment we need to undertake so that ∆kpw = 0, that is for kpw to stay

constant, is equal to (n+ δ)kpw = 11 units.

Example. Let production function be of Cobb-Douglas type Y = KαL1−α. It follows that

ypw = f(kpw) = (kpw)α. The steady-state equilibrium in this economy is defined from s(k∗pw)α =

(n+ δ)k∗pw. Thus, k∗pw =
(

s
n+δ

) 1
1−α . Also, y∗pw = (k∗pw)α =

(
s

n+δ

) α
1−α , c∗pw = (1− s)

(
s

n+δ

) α
1−α .

Note that income per worker in the steady state will be higher if s is higher, n is lower, δ is

lower, and α is higher. Thus, countries with higher investment rates, lower population growth

rates, lower depreciation rates, and lower degree of the decline in the marginal product of capital

will be richer relative to the otherwise similar countries.

We found steady-state allocations, what are the equilibrium prices, w and R? We know that

w = FL(K∗, L∗) = (1 − α)KαL−α = (1 − α)
(
K
L

)α = (1 − α)(kpw)α = (1 − α)ypw = (1 − α)YL .

The rental price of capital R = FK(K∗, L∗) = αKα−1L1−α = α
(
K
L

)α−1 = α
ypw
kpw

= α Y/L
K/L = α YK .

The real interest rate is equal to r = FK(K,L)− δ = α
ypw
kpw
− δ.

Thus, the equilibrium rental prices, for a Cobb-Douglas production function, are linked to

the average productivity of each factor of production. In the steady-state equilibrium, w∗ =

(1− α)y∗pw and R∗ = α
y∗pw
k∗pw

.

We can write our equilibrium allocations and prices in the steady state as functions of

exogenous parameters only: k∗pw = k∗pw(s, n, δ), y∗pw = y∗pw(s, n, δ), R∗ = R∗(s, n, δ), w∗ =

w∗(s, n, δ).

For our example, w∗ = (1 − α)
(

s
n+δ

) α
1−α , R∗ = α

( s
n+δ )

α
1−α

( s
n+δ )

1
1−α

= α
(

s
n+δ

)−1
= αn+δ

s , and

r∗ = n+δ
s − δ. Thus, in the steady state of the economy without technological progress, real

wages and real interest rates are constant: they are just functions of exogenous parameters of

the model, s, δ, n and α, assumed to be constant. Note that, ceteris paribus, the real interest

rate is higher for lower saving rates, higher population growth rates, and higher depreciation

rates. Intuitively, more people in the economy (i.e., higher n) will make a marginal unit of

capital more productive.2

2Think of intuitions for why the real interest rate is higher, ceteris paribus, if the depreciation rate is higher,
and savings rate is lower.
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What is the share of capital and labor costs in total income? We know that Y = wL+RK,

and the share of labor costs/income and capital costs/income in total income are equal to wL
Y

and RK
Y , respectively. Thus, 1 = wL

Y + RK
Y = wL/L

Y/L + RK/L
Y/L = w

ypw
+ Rkpw

ypw
= (1−α)ypw

ypw
+α ypwkpw

kpw
ypw

=

(1 − α) + α. Thus, for a Cobb-Douglas production function Y = KαL1−α, the share of labor

and capital costs in total income are constant, and equal to (1 − α) and α, respectively. For

developed economies, we see that these shares, although fluctuating over time, tend to 2/3 and

1/3. Hence, if we think of the aggregate production function in developed economies being of

Cobb-Douglas type, we should assume that α = 1/3.

Golden-rule savings rate. It can be shown that if production function is Y = KαL1−α,

then the golden-rule savings rate in the economy is equal to α—the share of capital income

in total income. In other words, if the economy saves at the rate s = α, then it will reach

the golden-rule steady state. For the economy without technological progress, the golden-rule

capital per worker is obtained from MPK(k∗gold) = n+δ. For this production function, MPK =

FK(K,L) = αKα−1L1−α = α
(
K
L

)α−1 = αkα−1
pw . Thus, the golden rule capital per worker is equal

to
(

α
n+δ

) 1
1−α . If the economy saves its capital income (and, correspondingly, consumes all of its

labor income), the total savings in the economy are αY , the per worker savings are αypw. For

this economy, the steady state happens when α(k∗pw)α = (n+δ)k∗pw, i.e., when k∗pw =
(

α
n+δ

) 1
1−α ,

which is exactly equal to the golden rule capital per worker we’ve just found.3

Transitional dynamics. Assume that the economy is in the steady state defined by k∗pw.

What will happen to the economy if we change one of the parameters, say, savings rate from s

to s′, with s′ > s? We know that the economy will move towards k∗∗pw > k∗pw and y∗∗pw > y∗pw.

We are now interested in the transitional path of the economy from k∗pw to k∗∗pw. Note that

at the old steady state, sy∗pw − (n + δ)k∗pw = 0. Since we are increasing savings rate, we are

redistributing a higher share of income per capita towards investment, reducing consumption at

the same time. Thus, at the instant the economy raises its savings rate, investment per worker

becomes s′y∗pw; k∗pw does not change at the instant since it takes one period for investment

to enlarge the capital stock. Thus, s′y∗pw − (n + δ)k∗pw > sy∗pw − (n + δ)k∗pw since s′ > s, by

assumption. The percentage change of capital per worker at the time of the change is equal

to ∆kpw
k∗pw

= s′y∗pw
k∗pw
− (n + δ) = s′ n+δ

s − (n + δ) > 0 since s′ > s. Since ∆kpw will be positive

until the economy hits k∗∗pw, the growth of capital per worker will be positive and shrinking

towards 0, with the largest growth rate observed at the time of the change in the savings

rate. Since total capital in the economy is K = kpwL, the growth rate in total capital is
∆K
K = ∆kpw

kpw
+ ∆L

L . In the old steady state, ∆K
K = n, at the time of the change in the savings

rate, ∆K
K = s′ n+δ

s − (n + δ) + n = s′ n+δ
s − δ. Since ypw = kαpw, the growth rate in output per

3The same finding will hold for Y = Kα(EL)1−α. See below for details on this production function.
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worker is equal to α∆kpw
kpw

. At the time of the change, ∆ypw
ypw

= αs′ n+δ
s −α(n+ δ). The economy’s

output per worker grows, first, at a zero rate before the change, at the rate αs′ n+δ
s − α(n + δ)

at the time of the change, and steadily shrinks towards zero, when the economy is at k∗∗pw. Since

total output is Y = ypwL, it grows at the rate ∆ypw
ypw

+ n.

Analogously, we can trace out the effects of exogenous changes in other parameters, n, g, or

δ. For example, assume that the economy is in the steady state and population growth increases

to n′ > n, while the other parameters are kept constant. At the time of the change, capital

per worker, and output per worker (and therefore investment and savings per worker) will stay

unchanged. This follows from the fact that it takes one time period (here it is better to think

in terms of one instant rather than one year as the period of economy’s observation) for the

economy to enlarge its labor force, now at a faster rate than before. Thus, at the time of the

change ∆kpw = sy∗pw − (n′ + δ)k∗pw, and we know that sy∗pw = (n + δ)k∗pw since the economy

was in the steady state before the arrival of “news” about its population growth. Thus, at the

time of the change, ∆kpw = (n+ δ)k∗pw − (n′ + δ)k∗pw = (n− n′)k∗pw and the percentage change

in capital per worker is ∆kpw
k∗pw

= n − n′ < 0, since we assumed that n′ > n. We also know

that k∗∗pw—the new steady state of the economy—will be lower than k∗pw. During the economy’s

transition, the growth rate in capital per worker will be n − n′ at the time of the change and

will start increasing and eventually approach zero, when the economy hits its new steady state

k∗∗pw.

Solow model with technological growth.

We assume that technological progress is labor-augmenting so that Y = F (K,EL), where

E is the “level of technology” at a particular point in time, and production function is constant

returns to scale in K and L. This means that zY = F (zK,EzL).

If we set z = 1
EL , then Y

EL = F ( K
EL ,

EL
EL) = F ( K

EL , 1) = f( K
EL). Denote the per effective

(efficient) worker output as ypew = Y
EL and per effective worker capital as kpew = K

EL . Then

ypew = f(kpew). If, for example, Y = Kα(EL)1−α, then we can show that zY = (zK)α(EzL)1−α.

Setting z to 1
EL , we obtain Y

EL = ypew = ( K
EL)α(ELEL)1−α = kαpew. Output per effective worker is a

function of capital per effective worker only. We assume that technology grows at an exogenous

rate g, i.e., ∆E
E = g.

From our calculus note, ∆kpew
kpew

= ∆K
K − ∆L

L − ∆E
E = sF (K,EL)

K − (n+ g+ δ) = sF (K,EL)/EL
K/EL −

(n + g + δ) = s
f(kpew)
kpew

− (n + g + δ). Thus, the law of motion of capital per effective worker

is ∆kpew = sf(kpew) − (n + g + δ)kpew. Similarly to our previous analysis, the economy will

reach the steady state when ∆kpew = 0, and so sf(k∗pew) = (n+ g + δ)k∗pew. For our production
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function Y = Kα(EL)1−α, ypew = kαpew. Thus, k∗pew =
(

s
n+g+δ

) 1
1−α and y∗pew =

(
s

n+g+δ

) α
1−α—

the functions of exogenous parameters only. Note that capital per worker kpw = K
L = kpewE,

and ypw = Y
L = ypewE. Thus, ∆kpw

kpw
= ∆kpew

kpew
+ ∆E

E = ∆kpew
kpew

+ g, and ∆ypw
ypw

= ∆ypew
ypew

+ g. In the

steady state, ∆kpew
kpew

= ∆ypew
ypew

= 0, and so output per worker and capital per worker both grow at

the rate g. Aggregate capital is K = kpewEL and aggregate output is Y = ypewEL. Thus, the

growth rates in total output and total capital are, respectively, equal to ∆Y
Y = ∆ypew

ypew
+ g + n,

∆K
K = ∆kpew

kpew
+ g+ n. In the steady state, both of them will equal to g+ n, since neither capital

per effective worker nor output per effective worker are growing in the steady state (sometimes

called a balanced growth path since aggregates relative to labor are actually growing).

Set the time when the economy starts operating to 0. Then L(1) = (1 + n)L(0), L(2) =

(1 + n)L(1) = (1 + n)(1 + n)L(0) = (1 + n)2L(0), . . . , L(t) = (1 + n)tL(0), where L(t) is

the amount of labor resources at time t, in t years after the economy started operating. Sim-

ilarly, E(t) = (1 + g)tE(0). Thus, capital per worker, in t years from the economy’s initia-

tion, is
(

s
n+g+δ

) 1
1−α

E(0)(1 + g)t, and total capital at t is
(

s
n+g+δ

) 1
1−α

E(0)L(0)(1 + g)t(1 +

n)t. Output per worker at time t will be
(

s
n+g+δ

) α
1−α

E(0)(1 + g)t and total output will be
(

s
n+g+δ

) α
1−α

E(0)L(0)(1 + n)t(1 + g)t.

What are the equilibrium prices in the economy with technological growth? Recall that

w = FL(K,EL) and R = FK(K,EL). For our production function, FL(K,EL) = (1 −
α)KαE1−αL−α = (1 − α)K

α(EL)1−α
L = (1 − α)YL = (1 − α)ypw. Thus, w = (1 − α)ypw =

(1 − α)ypewE. In the steady state of the economy with a positive technological growth, ∆w
w =

∆ypew
ypew

+g—wages grow at a constant rate equal to g once the economy hits the steady state. The

rental price of capital, for our example, is R = FK(K,EL) = αKα−1(EL)1−α = αK
α(EL)1−α

K =

α YK = α Y/L
K/L = α

ypw
kpw

= α Y/EL
K/EL = α

ypew
kpew

. Thus, the rental price of capital will be constant for

the steady-state economy with technological growth; it will be constant for the economy without

technological progress as well. Since r = R− δ, the real interest rate is predicted to be constant

in the economies that reached their steady states. The (approximate) constancy of real interest

rates is one of the facts of modern developed economies.

We can show, for this production function, that the shares of capital and labor income in

total income are α and 1− α, respectively. For example, RK
Y = α Y

K
K

Y = α. Along the balanced

growth path, w∗(t) = (1− α)
(

s
n+g+δ

) α
1−α

E(t) = (1− α)
(

s
n+g+δ

) α
1−α

E(0)(1 + g)t, where E(0)

is the level of technology at the time the economy started operating.

Transitional dynamics. Assume the previous set-up and add labor-augmenting technological

growth. Our per effective worker production function is ypew = kαpew. The steady state will
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happen when s(k∗pew)α = (n+g+δ)k∗pew, or when k∗pew =
(

s
n+g+δ

) 1
1−α . At the time of the change

in the savings rate, ∆kpew
kpew

= s′ y
∗
pew

k∗pew
−(n+g+δ) = s′ n+g+δ

s −(n+g+δ) > 0 since s′ > s. At the time

of the change, the growth rate in capital per worker is ∆kpw
kpw

= ∆kpew
kpew

+g = s′ n+g+δ
s −(n+δ) > g,

the growth rate in total capital is ∆K
K = ∆kpew

kpew
+ g + n = s′ n+g+δ

s − δ > g + n. The economy

eventually will tend to its new steady state k∗∗pew =
(

s′
n+g+δ

) 1
1−α , when the growth rate in capital

per effective worker (output per effective worker) is zero; the growth rate in capital per worker

(output per worker) is g; and the growth rate in total capital (total output) is g + n.

Similarly to the previous example, before the change output per worker grew at the rate g, at

the time of the change the growth rate jumped to α∆kpew
kpew

+g = αs′ n+g+δ
s −α(n+g+δ)+g > g,

and eventually it would start shrinking towards g. Total output, in turn, was growing at the rate

n+ g, the growth rate then jumped to αkpewkpew
+ g+n = αs′ n+g+δ

s −α(n+ g+ δ) + g+n > g+n

at the time of the change, and it would start shrinking towards g + n, its balanced growth rate

in the new steady state.
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