# MONETARY POLICY, THE QUANTITY EQUATION OF MONEY, AND INFLATION

Instructor: Dmytro Hryshko

#### Outline

- What is money?
- Role of money
- Central banks and money supply
- Instruments of monetary policy
- Quantity equation

## Motivation

- Analysis so far has been in real terms, since people ultimately care about goods/services not \$'s
- So far not much emphasis on prices or inflation = % increase of price level
- BUT, inflation/deflation very **relevant**: increase in oil prices, increase and decrease in house prices all lead to threats to price stability

## Money and Prices

- Inflation rate = the percentage increase in the average level of prices
- Price = amount of money required to buy a good
- Because prices are defined in terms of money, we need to consider the nature of money, the supply of money, and how it is controlled

# What is Money?

## Money is the stock of assets that can be readily used to make transactions

# Money: functions

- Medium of exchange: we use it to buy stuff
- Store of value: transfers purchasing power from the present to the future
- Unit of account: the common unit by which everyone measures prices and values
- Liquidity: easy access to funds, facilitates markets



- Fiat money: has no intrinsic value (the paper currency we use)
- Commodity money: has intrinsic value (gold coins, cigarettes in P.O.W. camps)

# Fiat Money

- Fiat money makes very little sense to an extra terrestrial visiting earth
- It's a natural evolution from having commodity money
- It's based on all of us coordinating that we will <u>honour the "agreement"</u> of accepting paper bills
- For this reason it's important who controls the production of the money bills

The money supply & monetary policy

- The money supply is the quantity of money available in the economy
- Monetary policy is the control over the money supply
- Who determines the monetary policy?

#### Central Banks

- Monetary policy is conducted by a country's central bank
- In many countries, monetary policy delegated to (partially) **independent** central banks
  - -Canada: Bank of Canada (BoC)
    -UK: Bank of England
    -USA: Federal Reserve or the "Fed"
    -Euro zone: European Central Bank or ECB

## Monetary policy in Canada

- The objective of monetary policy is to preserve the value of money by keeping inflation low, stable and predictable.
- The inflation target=2% a year (with the range of 1–3%), first set in 1991 by BoC and the federal government, to be reviewed every 5 years.
- The target is achieved by adjusting the overnight rate—the interest rate that the Bank expects to be used in financial markets for one-day (or "overnight") loans between financial institutions.

See more details at http://www.bankofcanada.ca/ core-functions/monetary-policy/#objective CB Independence & Transparency in the UK

- If inflation rate is more or less than one percentage point from target (i.e., less than 1% and more than 3%), the BoE has to write a formal letter to the Chancellor explaining why
- First such letter ever written, was in April 2007
- Latest letter, 13 February 2012 (import prices, VAT, and energy costs): http://www.bankofengland.co.uk/monetarypolicy/ Documents/pdf/cpiletter120214.pdf
- All letters: http://www.bankofengland.co.uk/ monetarypolicy/pages/inflation.aspx

# Control of Money Supply

- Central Bank controls money supply through open-market operations
- Definition: the way by which central banks control the amounts of national currency by buying or selling government securities (i.e., government bonds, foreign currency, gold)
- Use new currency to buy assets or redeem old currency by selling assets in the open market
- See more details here: http://www.frbsf.org/ us-monetary-policy-introduction/tools/

# Control of Money Supply

- Example: Control via bonds
- Price of bond (\$P<sub>b</sub>) that pays \$ 100 in a year and nominal interest rate (i) are linked through

$$i = (100 - P_b) / P_b \Leftrightarrow P_b = 100 / (1 + i)$$

- Price of bonds (\$  $P_b$ ) and nominal interest rate (i) move in <u>opposite</u> directions
- <u>Central bank controls interest rate!</u>

## Control of Money Supply

• Increase of money supply: Central bank buys bonds paying with money

$$\uparrow M^s \Rightarrow \uparrow \$P_b \Rightarrow i \downarrow$$

• Reduction of money supply: Central bank sells bonds receiving money

$$\downarrow M^s \Longrightarrow \downarrow \$P_b \Rightarrow i \uparrow$$

# Other Ways for Controlling Money Supply

- Reserve requirements: control the minimum reserve-deposit ratio for banks
- Discount rate: control the interest rate that the central bank charges when giving loans to banks

## Types of Monetary Policy

- Inflation targeting:
  - -Bank of England and BoC: price stability = 2% target with 1% band; in the UK, if target missed, formal letter explaining why -ECB: price stability = less than 2% inflation
- Money growth target: Bundesbank, ECB
- Employment target, stable prices, and moderate long-term interest rates: US Fed (at least up until Greenspan's times)
- Quantitative easing: the central bank buying assets from private institutions (banks, pension funds, insurance companies)

#### Measures of Money

- M0 = (monetary base) currency (notes and coins) + reserves
- M1 = M0 + demand deposits, travelers' cheques, other checkable deposits
- M2 = M1 + short time deposits, small savings deposits
- M3 = M2 + long time deposits
- M4 = M3 + least liquid assets, e.g., long term bonds

# Seignorage

3 ways to finance public spending:

- taxes
- selling bonds
- print and disseminate money
  - The "revenue" raised from printing money is called seigniorage (from French seigneur)
  - The inflation tax: Printing money to raise revenue causes inflation. Inflation is like a tax on people who hold money

# Seignorage

- Originally, when commodity money was used, seignorage came from the difference between the cost of minting a coin and its face value
- Seignorage and quantitative easing are close relatives (both are "printing money")

# The Quantity Theory of Money

- A simple theory linking the inflation rate to the growth rate of the money supply
- Begins with a concept called velocity

## Velocity

- Velocity of money: the rate at which money circulates, or the number of times the average bank note changes hands in a given time period
- Example: In 2003, in US: -\$500 billion in transactions
  - -money supply = 100 billion
  - –the average dollar is used in five transactions in  $2003\,$

-so, velocity = 5

#### • This suggests the following definition:

$$V = \frac{T}{M}$$

where V = velocity T = dollar value of all transactions M = money supply The Quantity Equation

- Use nominal GDP as a proxy for total transactions
- Then,

$$V = \frac{P \times Y}{M}$$

where P = price of output (GDP deflator) Y = quantity of output (real GDP)  $P \times Y =$  dollar value of output (nominal GDP) The Quantity Equation

### $M\times V=P\times Y$

- follows from the preceding definition of velocity
- It is an **identity**: it holds by definition of the variables

Quantity Theory of Money

Assume velocity is constant and exogenous

 $M\times \bar{V}=P\times Y$ 

- Nominal GDP  $(P \times Y)$  determined by money supply (monetary policy)
- Real GDP determined by supply side of classical model (production function)
- Price level (nominal GDP)/(real GDP)
- Relation between money growth and inflation follows naturally

Money, Prices and Inflation

• Take natural logarithms of quantity equation:

$$\ln(M) + \ln(\bar{V}) = \ln(P) + \ln(Y)$$

• Take changes:

$$\Delta \ln(M) + \Delta \ln(\bar{V}) = \Delta \ln(P) + \Delta \ln(Y)$$



Implications of Quantity Theory

$$\pi = \frac{\Delta M}{M} - \frac{\Delta Y}{Y}$$

- Normal economic growth requires a certain amount of money supply growth to facilitate the growth in transactions
- Money growth in excess of this amount leads to inflation
- $\frac{\Delta Y}{Y}$  depends on growth in the factors of production and on technological progress

The quantity theory of money predicts a one-for-one relation between changes in the money growth rate and changes in the inflation rate



▲ □ →
 30 / 73

## Inflation and Money Growth

- "Inflation is always and everywhere a monetary phenomenon," (Milton Friedman, Nobel prize 1976)
- Is this true in the data? Yes in the long run (as in the figure)
- No if we look at monthly data on money growth and inflation

# Quantity Theory of Money, summary

- The quantity theory of money is a classical theory for money and inflation
- "Classical" assumes prices are flexible & markets clear
- Applies in the medium/long-run

#### Nominal and Real Interest Rates

- Real interest rate (r) = % rate of return on real assets
- Nominal interest rate (i) = % rate of return on nominal assets
- Note: can only directly observe nominal interest rates (e.g., on government bonds)
- How are the two interest rates related?

#### Inflation and interest rates

- Nominal interest rate, i, not adjusted for inflation
- Real interest rate, r adjusted for inflation:

$$r = i - \pi$$

• Note that this relationship is an approximation that comes from

$$(1 + \pi) \times (1 + r) = (1 + i)$$

- The Fisher equation:  $i = r + \pi$
- Classical model: S = I determines r
- Hence, an increase in  $\pi$  causes an equal increase in i
- This one-for-one relationship is called the Fisher effect

#### US inflation and nominal interest rate


#### International evidence



#### Two Real Interest Rates

- $\pi$  = actual inflation rate (not known until after it has occurred)
- $\pi^e = \text{expected inflation rate}$
- $i \pi^e = \mathbf{ex}$  ante real interest rate: the real interest rate people expect at the time they buy a bond or take out a loan
- $i \pi = ex post$  real interest rate: the real interest rate people actually end up earning on their bond or paying on their loan

#### Demand for Money

- Quantity Theory of Money assumes that demand for real money balances depends only on Y
- Demand money to make purchases of goods (transactions motive)
- But if we hold all wealth in money -lose interest (i)
  - -but have to go to bank less frequently
- If we hold all wealth in bonds -don't lose interest
  - -but have to run to bank all the time

#### Money Demand and Interest Rate

- We now consider another determinant of money demand: the nominal interest rate
- The nominal interest rate *i* is the **opportunity cost** of holding money (instead of bonds or other interest-earning assets)
- Hence,  $\uparrow i \Rightarrow \downarrow$  in money demand

#### The Money Demand Function

$$(M/P)^d = L(i,Y)$$

(M/P)<sup>d</sup> real money demand depends

 negatively on i (the opportunity cost of holding money)
 positively on Y (need more money for

spending, when Y is higher)

• L is used for the money demand function because money is the most liquid asset.

#### The Money Demand Function

$$(M/P)^{d} = L(i, Y) = L(r + \pi^{e}, Y)$$

- When people are deciding whether to hold money or bonds, they don't know what inflation will turn out to be.
- Hence, the nominal interest rate relevant for money demand is  $r + \pi^e$ .

#### Equilibrium in the Money Market



What determines what—in the long run

$$(M/P) = L(r + \pi^e, Y)$$

- M exogenous (the BoC, BoE or Fed)
- r adjusts to make S = I (also related to R/P, the real rental rate of capital)

• 
$$Y = \overline{Y} = F(\overline{K}, \overline{L})$$

• P adjusts to make (M/P) = L(i, Y)

#### Comparative statics

## $(M/P) = L(r + \pi^e, Y)$

- How does P respond to changes in M?
- How does P respond to changes in  $\pi^e$ ?

How P responds to changes in M

# $(M/P) = L(r + \pi^e, Y)$

For given values of r, Y, and  $\pi^e$ , a change in M causes P to change by the same percentage just like in the Quantity Theory of Money

#### Expected Inflation

- In the short run,  $\pi^e$  may change when people get new information
- Example: Suppose Bank of Canada announces it will increase M next year. People will expect next year's P to be higher, so  $\pi^e$  rises
- This will affect P now, even though M hasn't changed yet— $P \uparrow$

#### How ${\cal P}$ responds to ${\cal M}$

- Channel 1: For given values of r, Y, and  $\pi^e$  $M \uparrow$  then  $P \uparrow$  by the same percentage
- Channel 2: By Fisher effect, future  $M \uparrow$ means  $\pi^e \uparrow$ , and  $P \uparrow$

Price level today depends on both current and future monetary policy

#### Money, Prices and Interest Rates



#### The Classical View of Inflation

• A change in the price level is merely a change in the units of measurement, in other words, changes in inflation have **no real effects** 

So why, then, is inflation a social problem and is disliked by people?

#### The social costs of inflation

- Costs when inflation is expected
- Additional costs when inflation is different than people had expected

#### The Costs of Expected Inflation: Shoeleather Costs

The costs and inconveniences of reducing money balances to avoid the inflation tax

- $\uparrow \pi \Rightarrow \uparrow i \Rightarrow \downarrow$  real money balances
- Remember: In long run, inflation doesn't affect real income or real spending
- So, same monthly **real** spending but lower average money holdings means more frequent trips to the bank to withdraw cash

## Digression: Knowing the model limitations

- Quantity theory of money assumes constant velocity
- But high inflation ⇒ high shoeleather costs
   ⇒ less demand for money ⇒ higher velocity?
- Velocity may vary in the short run
- Quantity theory not suitable for short run
- Question is whether velocity is constant in the long run (i.e., on average) or not

## The Costs of Expected Inflation: Menu Costs

The costs of making changes to prices

- Examples: print new menus; print & mail new catalogs
- The higher is inflation, the more frequently firms must change their prices and incur these costs

The Costs of Expected Inflation: Relative Price Distortions

- Firms facing menu costs change prices infrequently
- Example: Suppose a firm issues new catalog each January. As the general price level rises throughout the year, the firm's *relative* price will fall
- Different firms change their prices at different times, leading to relative price distortions
- . . . which cause microeconomic inefficiencies in the allocation of resources

The Costs of Expected Inflation: Unfair Tax Treatment

Some taxes are not adjusted to account for inflation, such as the capital gains tax Example:

- $\bullet$  Jan 1: you bought \$ 10,000 worth of a stock
- Dec 31: you sold the stock for \$ 11,000, so your nominal capital gain was \$ 1000 (10%).
- Suppose  $\pi = 10\%$  during the year. Your real capital gain is \$ 0.
- But the government requires you to pay taxes on your \$ 1000 nominal gain!!!

#### The Costs of Expected Inflation: General Inconvenience

- Inflation makes it harder to compare nominal values from different time periods
- This complicates long-range financial planning

#### The Costs of Unexpected Inflation

- Arbitrary redistribution of wealth and purchasing power (e.g., pensioners with fixed pension get hurt)
- Increased Uncertainty

 $-\pi$  turns out different from  $\pi^e$  more often, and the differences tend to be larger

makes risk averse people worse off (distorts their intertemporal decisions)

#### Benefits of Inflation

- Nominal wages are rarely reduced, even when the equilibrium real wage falls
- Inflation allows the real wages to reach equilibrium levels without nominal wage cuts
- Therefore, moderate inflation improves the functioning of labor markets

## Hyperinflation

- $\pi \geq 50\%$  per month
  - $\bullet$  All the costs of moderate inflation described above become huge under hyperinflation
  - Money ceases to function as a store of value, and may not serve its other functions (unit of account, medium of exchange)
  - People may conduct transactions with barter or a stable foreign currency

What causes hyperinflation?

Hyperinflation is caused by excessive money supply growth:

- When the central bank prints money, the price level rises
- If it prints money rapidly enough, the result is hyperinflation

#### **Recent episodes of hyperinflation**



## Why Governments Create Hyperinflation

- When a government cannot raise taxes or sell bonds, it must <u>finance spending</u> increases by printing money
- In theory, the solution to hyperinflation is simple: stop printing money
- In the real world, this requires drastic and painful fiscal restraint (which is the <u>cause</u> of printing money)

- Bad monetary policy can cause severe problems or reinforce downturn
- Deflation in Japan

-Nominal interest rates near zero, but falling prices  $\Rightarrow r = i - \pi = 0 - (-2) = 2\%$  (real interest rate high)  $\Rightarrow$  investment low

#### Deflation

- Deflation is generally regarded negatively in that it is usually a symptom of a depression or severe recession
- People expect prices to fall, so they

Spend less money  $\Leftrightarrow$  factories & businesses close

• Vicious circle that leads to recession

## The Classical Dichotomy

**Real variables** measured in physical units: quantities and relative prices, e.g.

- quantity of output produced
- real wage: output earned per hour of work
- real interest rate: output earned in the future by lending one unit of output today

## The Classical Dichotomy

# Nominal variables measured in money units, e.g.

- nominal wage: \$'s per hour of work
- nominal interest rate: \$'s earned in future by lending \$ 1 today
- the price level: the amount of \$'s needed to buy a representative basket of goods

#### The Classical Dichotomy

- Classical Dichotomy: the theoretical separation of real and nominal variables in the classical model, which implies nominal variables do not affect real variables.
- Neutrality of Money: Changes in the money supply do not affect real variables. In the real world, money is neutral in the long run.

#### Why not zero inflation target?

- Problems caused by the constraint that (*nominal*) interest rates cannot fall below zero
- Difficulties in measuring inflation accurately (the growth in CPI is known to overstate the cost of living)
- Downward nominal wage rigidities that could affect labour market adjustment
- For more details, see http://www.bankofcanada.ca/wp-content/uploads/ 2010/11/why\_canada\_inflation\_target.pdf

#### Problems with ZLB

## Recall:

$$r = i - \pi$$

• Once in a while want to have a negative real interest rate, r, to stimulate investment and consumer spending, i.e., want to set

#### $i < \pi$

• If  $\pi = 0$ , the smallest r would equal the smallest i, and cannot fall below 0!

Why inflation target then is not 4%, 5%, etc.?

If inflation target is higher, greater ability to lower i below  $\pi$ . Why not using a higher target?

- Higher inflation historically correlates with higher variability ⇒ people's inflation expectations are less anchored
- Credibility issues. If reset to 4%, why not 6%, or 10%?
- Money will be less effective as a store of value.
- Use negative real interest rates in case of severe crises, but those are fairly rare ⇒ costly to keep high inflation target.

## Summary of Money and Inflation

- What is money
- Quantity theory of money
- Nominal interest rate (Fisher effect)
- Money demand
- Costs of inflation
- Hyperinflation
- Deflation
- Classical Dichotomy


## Mankiw and Scarth, 4th edition, Chapter 4