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A 2-period formulation

2-period problem, periods 0 and 1.

Within-period (instantaneous) utility function is quadratic:

u(ct) = −1

2
(ct − c̄)2.

Freely borrow/lend at the constant real interest rate r.

Endowments y0 and y1 are known at time 0.

c̄ is the “bliss” consumption level. If ct = c̄, a consumer
attains the maximum utility possible, equal to 0.

c̄ ≥ ct so that the marginal utility is positive: c̄− ct > 0.

β ∈ (0, 1) is the time discount factor.

β(1 + r) = 1.
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Optimization problem

max
c0≥0,c1≥0

U(c0, c1) = −1

2
(c0 − c)2 − β

1

2
(c1 − c)2

s.t. c0 +
c1

1 + r
= y0 +

y1
1 + r

,

where β ∈ (0, 1) is the time discount factor. For this utility
function,

MU0 = c̄− c0
MU1 = β(c̄− c1).
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Optimum
At the optimum, the following two equations should be satisfied:

(c− c∗0) = β(1 + r)(c− c∗1)

c∗0 +
c∗1

1 + r
= y0 +

y1
1 + r

.

Since we assumed that β = 1
1+r , we can write the first of those

equations as
c− c∗0 = c− c∗1, or c∗0 = c∗1.

Plugging this equilibrium condition into the second equation,

we obtain c∗0 +
c∗0
1+r = y0 + y1

1+r , or

c∗0 = c∗1 =
1 + r

2 + r

(
y0 +

y1
1 + r

)
.

Consumer, for these preferences, will prefer to smooth
consumption across periods perfectly.
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Infinite horizon–1
Assume instead that a consumer’s horizon is infinite, and s/he
chooses consumption for periods t = 0, 1, 2, . . . In this case,

max
c0≥0,c1≥0,c2≥0,...

U(c0, c1, c2, . . .) = −1

2
(c0 − c)2︸ ︷︷ ︸
=u(c0)

+β

−1

2
(c1 − c)2︸ ︷︷ ︸
=u(c1)



+ β2

−1

2
(c2 − c)2︸ ︷︷ ︸
=u(c2)

+ β3

−1

2
(c3 − c)2︸ ︷︷ ︸
=u(c3)

+ . . .

s.t. c0 +
c1

1 + r
+

c2
(1 + r)2

+
c3

(1 + r)3
+ . . . = y0 +

y1
1 + r

+
y2

(1 + r)2
+

+
y3

(1 + r)3
+ . . .
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Infinite horizon–2

More compactly,

max
c0≥0,c1≥0,c2≥0,...

U(c0, c1, c2, . . .) =

∞∑
t=0

[
−1

2
βt(ct − c)2

]

s.t.

∞∑
t=0

ct
(1 + r)t

=

∞∑
t=0

yt
(1 + r)t

.

Now, instead of finding just c∗0 and c∗1, we will need to find the
whole (infinite) sequence {c∗0, c∗1, c∗2, . . .}.

Not so hard! Just need the (optimality) Euler equations and
the lifetime budget constraint.
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The equations to be satisfied at the optimum

MU1 = (1 + r)MU2

MU2 = (1 + r)MU3

MU3 = (1 + r)MU4

MU4 = (1 + r)MU5

...
∞∑
t=0

c∗t
(1 + r)t

=

∞∑
t=0

yt
(1 + r)t

.
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In terms of our utility function, the following equations should
be satisfied at the optimum:

c− c∗0︸ ︷︷ ︸
MU0

= (1 + r)β(c− c∗1)︸ ︷︷ ︸
MU1

β(c− c∗1)︸ ︷︷ ︸
MU1

= (1 + r)β2(c− c∗2)︸ ︷︷ ︸
MU2

β2(c− c∗2)︸ ︷︷ ︸
MU2

= (1 + r)β3(c− c∗3)︸ ︷︷ ︸
MU3

...
∞∑
t=0

c∗t
(1 + r)t

=

∞∑
t=0

yt
(1 + r)t

.

Since we assume that β = 1
1+r , the sequence of Euler equations

implies

c∗0 = c∗1, c
∗
1 = c∗2, c

∗
2 = c∗3 . . .⇒ c∗0 = c∗1 = c∗2 = c∗3 = . . . = c∗.
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Plugging the result into the lifetime budget constraint,

c∗
∞∑
t=0

1

(1 + r)t
=

∞∑
t=0

yt
(1 + r)t

.

Note that

∞∑
t=0

1

(1 + r)t
= 1 +

1

1 + r
+

1

(1 + r)2
+

1

(1 + r)3
+ . . .,

and 1
1+r < 1. We want to find S = 1 + x+ x2 + x3 + . . ., where

x ≡ 1
1+r . This sum will be equal to 1

1−x = 1
1− 1

1+r

= 1+r
r .

c∗ = c∗0 = c∗1 = c∗2 = . . . =
r

1 + r

[ ∞∑
t=0

yt
(1 + r)t

]
︸ ︷︷ ︸

yp

.

Milton Friedman: individual consumption in each period should
be related to an estimate of the permanent income.

9 / 15



Aside

It is easy to show that

S = 1 + x+ x2 + x3 + x4 + . . . =
1

1− x
, for |x| < 1.

Multiply the LHS and RHS of the equation by x,

xS = x+ x2 + x3 + x4 + x5 + . . . ,

and subtract the result from S, to obtain

S−xS = (1+x+x2 +x3 +x4 + . . .)− (x+x2 +x3 +x4 + . . .) = 1.

Thus,

S =
1

1− x
.
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Example: constant flow of endowments

If y0 = y1 = y2 = . . . = y, c∗ will be equal to

r

1 + r
y

[
1 +

1

1 + r
+

1

(1 + r)2
+

1

(1 + r)3
+ . . .

]
= y

r

1 + r

1 + r

r
= y
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Stochastic incomes

In reality, future incomes are uncertain (that is, stochastic).
At time t, when making consumption decision for time t,
we do not know for sure {yt+1, yt+2, yt+3, yt+4, . . .}.
In this case, it does not make sense to set consumptions for
periods ct+1, ct+2, . . . once and for all, since new
information about future incomes and permanent income
will arrive in periods following t.

The optimality (Euler) condition that links optimal
consumptions in periods t and t+ 1, for the utility function
we adopted, will read as:

c∗t = Et(c
∗
t+1),

where Et(·) is expectation conditional on information
(about future endowments) available at time t.
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Stochastic Euler equation

Subtracting c∗t from both sides,

Et

(
c∗t+1 − c∗t

)
= Et∆c

∗
t+1 = 0.

It means that the expected future change in consumption, given
all the available information at time t, is equal to zero, that is
consumption does not change between periods t and t+ 1 if
there is no additional information arriving between periods t
and t+ 1 about consumer’s incomes. In statistics, a variable
that has this property is called a martingale.

An implication of the martingale property of consumption is
that consumption in period t+ 1 will differ from consumption
in period t only if a consumer receives unexpected “news”
about his permanent income.
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Optimal consumption with stochastic incomes

In terms of the levels of consumption, we may derive the
following relationship:

ct = ypt = Et

[
r

1 + r

(
yt +

yt+1

1 + r
+

yt+2

(1 + r)2
+

yt+3

(1 + r)3
+ . . .

)]
.
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Important implications

Consumption will change between adjacent periods if (a
consumer’s estimate of) the permanent income changes

Consumption will adjust by a larger margin if an
unexpected change in income is permanent (e.g., compare
disability vs. short spell of unemployment).

If the government contemplates about some policy affecting
individual incomes (say, a tax cut) and wants to boost the
economy via an increase in the aggregate consumption, it
will only succeed if the policy affects permanent incomes a
lot (say, a permanent reduction in income taxes).
Otherwise, the reaction of consumers will be weak, if any.

15 / 15


	Consumption

