
ECON 385. Intermediate
Macroeconomic Theory II. Solow
Model Without Technological

Progress

Instructor: Dmytro Hryshko
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Solow Growth Model

A major paradigm:
–widely used in policy making
–benchmark against which most recent
growth theories are compared

Looks at the determinants of economic growth
and the standard of living in the long run

Readings: Mankiw and Scarth, 4th edition,
Chapter 7
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Basic Assumptions

Competitive firms maximise profits

Produce homogeneous output (Y ) using
neoclassical production function

Production factors (K,L) may grow over time

Technological progress assumed exogenous;
technology is a public good (non-excludable,
and non-rival)
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Neoclassical Production Function

In aggregate terms: Y = AF (K,L)
Assume technology constant A and
normalized to 1
Define: y = Y/L = output per worker and
k = K/L = capital per worker
Assume constant returns to scale:
zY = F (zK, zL) for any z > 0
Pick z = 1/L. Then

Y/L = F (K/L, 1)

y = F (k, 1)

y = f(k), where f(k) = F (k, 1)
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The production function

5 / 42



National Income Identity

Y︸︷︷︸
supply

= C + I︸ ︷︷ ︸
demand

Closed economy: NX = 0

No government: G = 0

In per worker terms (c = C/L and i = I/L)

y = c+ i
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The Consumption Function

0 < s < 1= the saving rate, the fraction of
income that is saved (s is an exogenous
parameter)

Consumption per worker:

c = (1− s)y
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Investment and Saving

Saving (per worker)=sy (by definition)

National income identity is y = c+ i

Rearrange to get:
i = y − c = y − (1− s)y = sy
investment = saving (Say’s Law)

Using the results above,

i = sy = sf(k)
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How is the capital per worker determined?

New capital is added each period by adding
investment to the old stock of capital

A portion of old capital wears off in the
production process which leads to a lower
capital stock. The process of “losing” capital
in the process of production is called
depreciation.

Let depreciation rate be δ. E.g., δ = 0.1
means that each year 10% of capital per
worker is wears off in production process.
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Capital Accumulation

Change in capital stock = investment –
depreciation

∆k = i− δk
Since i = sf(k), this becomes:

∆k = sf(k)− δk︸ ︷︷ ︸
fundamental equation of the Solow model
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The Law of Motion for k

∆k = sf(k)− δk︸ ︷︷ ︸
fundamental equation of the Solow model

Determines behavior of capital, k, over time

which, in turn, determines behavior of all of
the other endogenous variables because they
all depend on k.

E.g., income per person: y = f(k)
consumption per person: c = (1− s)f(k)
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The Steady State

If investment is just enough to cover
depreciation

sf(k∗) = δk∗

then capital per worker will remain constant

∆k = 0

This constant value, denoted k∗, is called the
steady state capital stock
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Notes

H Steady-state (SS) level of capital per worker k∗ is the
one economy gravitates to in the long run regardless of
its initial level of capital per worker be it above k∗, or
below k∗.

H At k∗, we can determine the SS (long-run) value the
long-run values of consumption per worker (c∗), and
investment per worker, y∗.

H At SS, output per worker, y∗, and therefore the
standard of living stays the same over time.

H With zero population and technological growth, the
growth rate of total output at the SS is zero!
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Numerical Example

Let production function be
Y = F (K,L) = K1/2L1/2. Let s = 0.3, and
δ = 0.1.

In per capita terms, Y/L = (K1/2L1/2)/L. And so
y = K1/2L−1/2, or y = (KL )1/2 = k1/2.

The law of motion of k:
∆k = sk1/2 − δk = 0.3k1/2 − 0.1k.

At the SS, ∆k = 0. Thus, k∗ solves:
0.3(k∗)1/2 − 0.1k∗ = 0. And so
k∗/(k∗)1/2 = 0.3/0.1 = 3. Thus, k∗ = 32 = 9.

y∗ = (k∗)1/2 = 3; c∗ = (1− s)y∗ = 0.7× 3 = 2.1
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Numerical example, step-by-step

Table 7-2  Approaching the Steady State: A Numerical Example 

Mankiw and Scarth: Macroeconomics, Canadian Fifth Edition 

Copyright © 2014 by Worth Publishers 
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Comparative statics and dynamics

Comparative statics: how one SS compares to
another SS when we change one of the
exogenous parameters, e.g., s, or δ
Comparative dynamics: how the economy
moves from one SS to another when we change
one of the exogenous parameters, e.g., s, or δ

Example: Change in savings rate:
s1 → s2, s2 > s1
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Predictions of the Solow Model

Higher s⇒ higher k∗

And since y = f(k) , higher k∗ ⇒ higher y∗

Thus, the Solow model predicts that countries
with higher rates of saving and investment
will have higher levels of capital and income
per worker in the long run.

What about the data?
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Investment Rates and Income per Person

• Strong correlation
•What determines savings?

– tax policy
– financial markets
– culture/preferences
– institutions (Acemoglu. Why nations fail?)
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The Golden Rule Savings Rate

Different values of s lead to different steady states.
How do we know which is the “best” steady state?
(normative issue)

Economic well-being depends on consumption, so the
“best” steady state has the highest possible value of
consumption per person: c∗ = (1− s)f(k∗)

An increase in s
–leads to higher k∗ and y∗, which may raise c∗

–reduces consumption share of income (1− s), which
may lower c∗

So, how do we find the s and k∗ that maximize c∗?
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Golden Rule of Capital

Planner wants to maximize
c = y − i = f(k)− sf(k). At the SS,
c∗ = f(k∗)− δk∗ since sf(k∗) = δk∗ at the SS.

Different saving rates, s, will give different
values of k∗ so we can write

c∗ = c∗(s) = f(k∗(s))− δk∗(s)

⇒ ∂c∗

∂s
=
∂k∗

∂s
[f ′(k∗)− δ] by chain rule

Low values of s⇒ low values of k∗⇒ high
values of MPK, and increasing consumption
with s, the reverse is true for high values of s.
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2.3 Transitional Dynamics in the Discrete-Time Solow Model . 43 

Saving rate 

Consumption 

gold(l � s)f(k*  ) 

0 s* 1 gold 

FIGURE 2.6 The golden rule level of saving rate, which maximizes steady-state consumption. 

must be considered with caution. In fact, the reason this type of dynamic inefficiency does not 
generally apply when consumption-saving decisions are endogenized may already be apparent 
to many of you. 

2.3 Transitional Dynamics in the Discrete-Time Solow Model 

Proposition 2.2 establishes the existence of a unique steady-state equilibrium (with positive 
activity). Recall that an equilibrium path does not refer simply to the steady state but to the 
entire path of capital stock, output, consumption, and factor prices. This is an important point 
to bear in mind, especially since the term “equilibrium” is used differently in economics than 
in other disciplines. Typically, in engineering and the physical sciences, an equilibrium refers 
to a point of rest of a dynamical system, thus to what I have so far referred to as “the steady-
state equilibrium.” One may then be tempted to say that the system is in “disequilibrium” when 
it is away from the steady state. However, in economics, the non-steady-state behavior of an 
economy is also governed by market clearing and optimizing behavior of households and firms. 
Most economies spend much of their time in non-steady-state situations. Thus we are typically 
interested in the entire dynamic equilibrium path of the economy, not just in its steady state. 

To determine what the equilibrium path of our simple economy looks like, we need to 
study the transitional dynamics of the equilibrium difference equation (2.17) starting from an 
arbitrary capital-labor ratio, k(0) >  0. Of special interest are the answers to the questions of 
whether the economy will tend to this steady state starting from an arbitrary capital-labor ratio 
and how it will behave along the transition path. Recall that the total amount of capital at the 
beginning of the economy, K(0) >  0, is taken as a state variable, while for now, the supply 
of labor L is fixed. Therefore at time t = 0, the economy starts with an arbitrary capital-labor 
ratio k(0) = K(0)/L > 0 as its initial value and then follows the law of motion given by the 

Source: Acemoglu. Introduction to Modern Economic Growth.
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Table 7-3  Finding the Golden Rule Steady State: A Numerical Example 

Mankiw and Scarth: Macroeconomics, Canadian Fifth Edition 

Copyright © 2014 by Worth Publishers 
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Golden rule savings rate

Maximum consumption per capita achieved when

∂c∗

∂s
=
∂k∗

∂s
[f ′(k∗)− δ] = 0

⇒ f ′(k∗)︸ ︷︷ ︸
=MPK

= δ,

when the slope of the production function equals
the slope of the depreciation line.
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Numerical Example, previous numbers but s

The planner needs to “induce”/set the saving
rate s that will support k∗gold.

Find k∗gold and sgold.

At the SS: s(k∗gold)
1/2 = 0.1k∗gold. Thus,

s = 0.1× (k∗gold)
1/2 (1).

We also know that MPK(k∗gold) = δ.

MPK = f ′(k). How to find f ′(k)? For a
power function, f(x) = xα, f ′(x) = αxα−1.

Thus for our example MPK = 1/2(k∗gold)
−1/2,

or 1/2× 1/(
√
k∗gold). And so...

√
k∗gold = 5, and

k∗gold = 25. From (1), sgold = 0.1× 5 = 0.5.
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The transition to the GR Steady State

The economy does NOT have a tendency to
move toward the Golden Rule steady state

Achieving the Golden Rule requires that
policymakers adjust s

This adjustment leads to a new steady
state with higher consumption

But what happens to consumption during the
transition to the Golden Rule?
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Starting with too little k and small s, raise s at t0

Figure 7-10  Increasing Saving When Starting With Less Capital Than in the Golden Rule Steady State 

Mankiw and Scarth: Macroeconomics, Canadian Fifth Edition 

Copyright © 2014 by Worth Publishers 
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Starting with too large k and large s, lower s at t0

Figure 7-9  Reducing Saving When Starting With More Capital Than in the Golden Rule Steady State 

Mankiw and Scarth: Macroeconomics, Canadian Fifth Edition 

Copyright © 2014 by Worth Publishers 
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Relaxing the assumption of no population growth
Assume that population in the economy grows n% per
year, that is, ∆L

L
= n. The law of motion of

aggregate capital ∆K = I − δK = sY − δK.

Note that k = K
L

. Using the math note I sent you, we can
show

∆k

k
=

∆K

K
− ∆L

L

=
I − δK
K

− ∆L

L

= s
Y

K
− δ − ∆L

L

= s
Y/L

K/L
− δ − ∆L

L

= s
y

k
− δ − n.
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Population growth

∆k

k
= s

y

k
− δ − n

Multiplying both sides of the equation by k, we obtain:

∆k = sy − δk = sy︸︷︷︸
actual investment

− (n+ δ)k︸ ︷︷ ︸
break-even investment

Break-even investment is the amount of investment
necessary to keep k constant. It includes:

δk to replace capital as it wears out

nk to equip new workers with capital (otherwise, k
would fall as the existing capital stock would be spread
more thinly over a larger population of workers)
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Population growth changes from n1 = 0 to n2 > 0
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Predictions of the Solow Model

Higher n⇒ lower k∗.

And since y = f(k), lower k∗ ⇒ lower y∗.

Thus, the Solow model predicts that countries
with higher population growth rates will have
lower levels of capital and income per worker
in the long run.

What about the data?
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Figure 7-13  International Evidence on Population Growth and Income per Person 

Mankiw and Scarth: Macroeconomics, Canadian Fifth Edition 

Copyright © 2014 by Worth Publishers 
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The Golden Rule with Population Growth

c∗ = y∗ − i∗ = f(k∗)− (δ + n)k∗

c∗ is maximized when

MPK = n+ δ
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Summary of Predictions of Solow Model

Solow growth model shows that, in the long run,
a country’s standard of living, y, depends

positively on its saving rate (s)

negatively on its population growth rate (n)

Change in policies (↑ s or ↓ n) result in

higher output per capita level in the long run

faster growth temporarily

but not everlasting growth of per capita
income (since in steady state nothing changes)
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Next

Solow model augmented with technological
progress

Policies to promote growth

Convergence

42 / 42


